The phonetic design of turn endings, beginnings, and continuations in conversation

Gareth Walker

Submitted for the degree of PhD

University of York
Department of Language and Linguistic Science

December 2004
Abstract

This thesis presents a series of exploratory studies of how participants engaged in everyday conversation utilise linguistic resources in managing entry to and exit from talk. For each study a data-set is constructed from audio recordings of telephone calls; this data-set is then analysed in terms of interactional organisation and linguistic design. Analysis of interactional aspects of the talk is conducted according to the principles of Conversation Analysis; analysis of linguistic design focuses on phonetic details, employing both impressionistic and acoustic techniques. Throughout the studies, an attempt is made to relate the linguistic (and particularly the phonetic) design of talk to its function in interaction.

The first two studies deal with some of the design features associated with the signalling of transition relevance, i.e. how participants produce and identify points at which a change in speakership can occur in an orderly fashion, and with some of the design formats available to participants for starting up talk following the issuing of a request. Two further studies outline the linguistic design and interactional function of two practices which are related to the marking of the beginnings and endings of units of talk. The first practice to be described involves speakers marking out a junction between components of the turn; the second involves the production of talk which, at both phonetic and grammatical levels, functions simultaneously as the end of one unit of talk and the beginning of another.

Taken as a whole, this thesis contributes to a better understanding of the relationship between the phonetic design of talk and its interactional function; it also demonstrates a methodology which can be used to more fully understand participants’ linguistic competences, as displayed and deployed in talk-in-interaction.
Contents

1 Introduction ... 10
 1.1 Motivations .. 11
 1.2 Pay-offs ... 15
 1.3 Terminology .. 17
 1.4 Linguistics-informed Conversation Analysis 18
 1.5 Structure of the thesis and main findings 20

2 Methodology ... 22
 2.1 Introduction .. 22
 2.2 Analysis of interaction 23
 2.2.1 Deployment and treatment as evidence for analytic claims 24
 2.2.2 Sequence organisation and sequential organisation 28
 2.2.3 The qualitative nature of the analysis 28
 2.3 Analysis of phonetic details 30
 2.3.1 Auditory analysis 30
 2.3.2 Acoustic analysis 32
 2.4 Representing talk-in-interaction on paper 38
 2.4.1 Desirable features of a system for transcribing talk-in-interaction 39
 2.4.2 Review of the Jefferson transcription system 39
 2.4.3 Transcription system adopted in this thesis 44
 2.5 Summary ... 51

3 Turn endings ... 52
 3.1 Introduction .. 52
3.2 Background and rationale for the study ... 54
 3.2.1 Previous work on transition relevance 54
 3.2.2 Motivations ... 60
3.3 Research questions .. 61
3.4 Data ... 62
 3.4.1 Data sources .. 62
 3.4.2 Treated-as-complete utterances ... 63
 3.4.3 Adjacency pairs .. 66
 3.4.4 Potential limitations of the data .. 70
3.5 Analysis .. 70
 3.5.1 Overview of features oriented to as marking transition relevance 71
 3.5.2 The signalling of transition relevance across first pair part types 72
 3.5.3 Accounting for the variability ... 83
3.6 Summary and implications .. 91

4 Turn beginnings: requests ... 93
 4.1 Introduction .. 93
 4.2 Background and rationale for the study .. 94
 4.2.1 Previous work on turn beginnings ... 94
 4.2.2 Motivations .. 96
 4.3 Research questions ... 98
 4.4 Data ... 98
 4.5 Analysis .. 99
 4.5.1 Overview of request types .. 99
 4.5.2 Responses to Type I requests ... 103
 4.5.3 Responses to Type II requests ... 127
 4.6 Summary and implications .. 134

5 Postponed second pair parts ... 137
 5.1 Introduction .. 137
 5.2 Description and exemplification ... 138
 5.3 Background and rationale for the study .. 141
 5.4 Research questions ... 141
Contents

5.5 Data 142
5.6 Analysis 142
 5.6.1 Uses of postponed second pair parts in interaction 142
 5.6.2 Phonetic design of sequences involving postponed second pair parts 146
 5.6.3 Extending the analysis 156
5.7 Summary and implications 163

6 Pivots 165
 6.1 Background and rationale for the study 166
 6.1.1 Previous work on pivots 166
 6.1.2 Motivations 168
 6.2 Research questions 170
 6.3 Data 171
 6.4 Analysis 171
 6.4.1 Phonetic design of pivots 172
 6.4.2 Uses of pivots in interaction 183
 6.4.3 Extending the analysis 195
 6.5 Summary and implications 197

7 Conclusions 201

A Transcription conventions 204

B Segmentation conventions 207

C Description of data corpora 209

D Text conventions 211

Glossary 212

References 214
List of Figures

1. Distribution of F_0 values in one speaker’s range ... 35
2. Utterance types produced with Armstrong & Ward’s Tune 1 pitch characteristics .. 58
3. Utterance types produced with Armstrong & Ward’s Tune 2 pitch characteristics .. 59
4. Labelled outline map of Britain indicating where the Holt corpus was recorded ... 63
5. Schematic representation of the main features of request-response beginnings ... 102
6. Labelled speech-pressure waveforms and wide-band spectrograms of two [yes]-components in response to Type I requests .. 126
7. Schematic representations of three practices for continuing a turn at talk ... 169
8. Labelled speech-pressure waveform and F_0 trace of part of the turn built with a pivot in Fragment 57 ... 174
9. Labelled speech-pressure waveforms and F_0 traces of parts of Fragment 60 ... 182
List of Tables

1. Pitch range measures for one speaker .. 35
2. Distribution of adjacency pair types within the data collected for analysis of first pair parts .. 69
3. Distribution of final vocal tract configurations within the data .. 88
4. Pitch step-up measures for sequences involving postponed second pair parts .. 149
5. Pitch range and mean pitch measures for sequences involving postponed second pair parts .. 150
Acknowledgements

It would be impossible to list all of the people who have supported or otherwise influenced me during the preparation of this thesis. I have been extremely fortunate in the amount of contact I have had with others working in this area who have been a rich source of ideas, encouragement, and inspiration. Any list would certainly include Jonny Butler, Traci Curl, Paul Drew, John Local, and Richard Ogden, the latter being prepared to act as my supervisor, for which he deserves special thanks. It isn’t possible for me to overstate the importance of having had John Local as a teacher, colleague, collaborator, and friend; since my time as an undergraduate, John always seems to have had the utmost confidence in me, even when I have had none in myself. Traci Curl successfully balanced the tasks of being my colleague and my partner: something which I hope she will do for many years to come. And of course my parents, who never seemed quite sure of what I was spending my time doing, but managed to support me anyway.

Author’s declaration

In the text, appropriate references are made to Curl, Local & Walker (2004); Local & Walker (2004) and Walker (2004). This thesis does not contain any substantive material from those articles, with the exception of Fragment 50, which also appears in Local & Walker (2004: 1396–7). Some of the data and
Ideas in Chapter 6 appeared in an earlier and quite different form as Walker (2002).

This research was supported by a Postgraduate Studentship in the Humanities awarded by the Arts and Humanities Research Board.
Chapter 1

Introduction

One key task for participants engaged in talk-in-interaction is the management of entry to and exit from talk. When speaking they are required to provide recognisable points at which co-participants can begin their talk; when listening, participants are required to monitor for these points and react accordingly. This thesis provides a detailed account of some aspects of how participants engaged conversation manage this entry to and exit from talk.

Throughout this thesis descriptions of the linguistic (phonetic) design of talk, and the consequences of those design features for the development of the interaction are presented side-by-side. Due to this mode of presentation — along with the analytic approach and its outcomes — this thesis should be of interest to analysts concerned with the organisation of talk-in-interaction, and with the organisation of linguistic resources. Clearly, it should hold particular interest for analysts with concerns in both areas. This thesis proceeds on the assumption that one way to better understand the linguistic competences of members of a speech community (in this particular case, British and North American speakers of English) is through the inspection of their behaviour in talk-in-interaction. Some of the reasons for focusing exclusively on talk-in-interaction are presented in the next section.

This chapter is devoted to providing motivations for the thesis, in terms of both the analytic approach taken and the phenomena placed under inspection (Section 1.1), discussion of some of the pay-offs of the investigation
Chapter 1. Introduction

1.1 Motivations

This section sets out some of the motivations for both the analytic approach taken in this thesis (which is described in Chapter 2), and for the inspection of the phenomena with which Chapters 3 to 6 are concerned.

One salient feature of this thesis is that it is concerned solely with data drawn from talk-in-interaction, and with the exception of the talk presented in Fragments 1 and 2, with data drawn from naturally occurring everyday conversations involving British and North American speakers of English. TALK-IN-INTERACTION refers to talk produced such that some element of interaction between participants occurs (including, for instance, business meetings, unscripted lectures, and interviews); CONVERSATION refers specifically to

“talk which is not subject to functionally specific or context-specific restrictions or specialized practices or conventionalized arrangements, in the way in which courts of law in session are, or classrooms, or religious ceremonies, or news interviews, or talks at scholarly and scientific meetings.”

(Scheglof 1999: 407, emphasis in original)

One obvious benefit of working with data drawn from talk-in-interaction is, as Bell et al. describe it, their “ecological validity” (Bell et al. 2003: 1001; see also Abercrombie 1963; Rischel 1992). Indeed, this view of talk-in-interaction has resulted in a growing body of work on such data (see e.g. Bell et al. 2003; Jurafsky et al. 2001 and references therein; recent work in what might be dubbed sociophonetics has taken talk-in-interaction as one of its main sources of data — see e.g. some of the papers in Foulkes & Docherty 1999; see also the papers in the special volume of Journal of the International Phonetic Association, volume 31, number 1, entitled “Patterns of Speech Sounds in Unscripted Communication”). Examining talk-in-interaction facilitates the de-
scription of language as used in performing its primary function: social interaction.\(^1\)

However, in this thesis data are drawn from talk-in-interaction not only because of its naturalness (see also Curl et al. 2004: 33): talk-in-interaction provides a rich source of analytic resources for demonstrating participants’ orientations to the analytic categories proposed, although these resources regularly go untapped (but cf. the analytic approach outlined in Chapter 2 and exemplified by Chapters 3 to 6 in which an emphasis is placed on demonstrating participants’ orientations to the categories established). Furthermore, it is not always clear whether data arising from introspection and/or produced in experimental settings accurately represent the behaviour of participants engaged in talk-in-interaction; moreover, there may be practices available to participants in talk-in-interaction which might not arise from even the most careful introspection (see e.g. the practices described in Chapters 5 and 6).

A further noteworthy feature of this thesis is that the studies (and therefore their claims and findings) are grounded in the observable behaviour of the participants engaged in the interaction. Grounding claims in the behaviour of participants in this way has at least two benefits. First, it ensures that the practices described have some kind of reality for the participants. Second, it liberates analysts from a reliance on analytic intuition and quasi-psychological speculation as to the motivating force behind the behaviour in question. That analysis should proceed in this way is one tenet of Conversation Analysis (some of the principles of which are described in Section 2.2), though this concern is a long-standing one in certain areas of linguistics. For instance, in 1930 the linguist J.R. Firth made the following remark:

“If we regard language as ‘expressive’ or ‘communicative’ we imply that it is an instrument of inner mental states. And as we know

\(^{1}\)That is, language is not designed to be experimented on, or subjected to introspection, though clearly both of these practices are possible, and are regularly invoked in linguistic investigations. Rather, the main and most common function of language to assist in the reaching of interactional goals (e.g. the making and granting of requests, opening a bank account, forging relationships etc.). A child, for instance, acquires language in order that these interactional goals may be fulfilled, and not to facilitate experiments.
so little of inner mental states, even by the most careful introspec-
tion, the language problem becomes more mysterious the more
we try to explain it by referring to inner mental happenings that
are not observable. By regarding words as acts, events, habits, we
limit our enquiry to what is objective and observable in the group
life of our fellows.”
(Firth 1930: 173)

Inspection of the behaviour of participants in talk-in-interaction also per-
mits the construction of data-sets on the basis of certain kinds of compara-
bility which might not be possible — or practical — in other frameworks.
For instance, in the study of turn endings (Chapter 3) both the place in se-
quence organisation of the talk in question and the action being implemented
are controlled for in constructing the data-sets and making the subsequent
comparisons and claims. Taking measures such as these ensures — as far
as is reasonably possible — that like is being compared with like. The sig-
nificance of comparing like with like along these parameters is as follows:
it is not at all clear what role sequence organisation and action play in the
organisation of phonetic resources. However, there are good reasons to take
seriously the possibility that their roles are significant and systematic. For
instance, Goldberg (1978) proposes a relationship between sequence organi-
sation and loudness; with regard to the relationship between action and pho-
etic design, Local (1996) outlines certain phonetic features associated with
news receipts, while Couper-Kuhlen (2001a) sets out certain phonetic char-
acteristic of reason-for-the-call turns. These studies, therefore, suggest that it

2 In notes on a series of lectures by Firth in 1938–9 at University College London, now housed in the Firthian Prosodic Archive of the Department of Language and Linguistic Science at the University of York, Elizabeth Anderson (later Elizabeth Uldall) writes that the elements of an analysis are
“to be interpreted from the point of view of the person whose they are and who’s
performing the action. You can’t have psychological categories and explanations
of ‘why’ he says something.”

It would seem, therefore, that as well as emphasising the need to focus on the observable
behaviour of participants, Firth was an early advocate of analytic techniques which focus on
the communicative needs of the participants, rather than the prejudices of the analyst.

3 Sequence organisation is discussed in Section 2.2.2.

13
may be costly to ignore either the place in sequence of the talk concerned, or
the action which it implements.

This notion of **comparability** — and ways in which comparability can
be established — will be discussed at various points throughout this the-
sis; **variability** is also a recurrent theme. Over recent years a great deal of
interest has been shown in phonetic variability, and particularly in the fac-
tors which might influence phonetic variability, and the functions it might
perform (see e.g. the special volume of *Journal of Phonetics*, volume 31, is-
issues 3–4, entitled “Temporal Integration in the Perception of Speech”). In-
vestigations into exemplar memory have demonstrated the relevance of cer-
tain fine-grained phonetic details in the processing of speech, and particu-
larly in the speed at which speech processing takes place (see the review in
Lachs, McMichael & Pisoni 2003: 220–230; see also Hawkins 2003).\(^4\) Also, so-
called sociophonetic studies have provided insights into how fine-grained
phonetic details are used to characterise speakers and their speech commu-
nities (see e.g. Docherty 2003; Docherty & Foulkes 1999, 2000; Docherty et al.
1997; Foulkes & Docherty 2000). This thesis contributes to the understand-
ing of phonetic variability — along with the factors that shape it, and the
functions that it performs — by investigating the relationship between the
phonetic design of talk and its function in interaction.

The bulk of the analysis is provided in Chapters 3 to 6, focusing on turn
beginnings, turn endings, and turn continuations. Being able to manage this
entry to and exit from talk in an orderly fashion is a key part of successful
verbal communication. Accordingly, a better understanding of how this is
managed represents a better understanding of one of the key aspects of con-
versational organisation, and of a vital linguistic competence. Furthermore,
turn transition (defined here as the shift of speakership from one participant
to another) has long been associated with phonetic design (see e.g. Sacks,
Scheglof & Jefferson 1974: 698-700): a view supported by subsequent work
on the phonetic markers of transition relevance (see the studies referred to
in Section 3.2). Accordingly, turn endings, beginnings, and continuations are

\(^4\)Other terms, including episodic memory, implicit memory, and detailed encoding are
used to refer to work of this kind: “exemplar memory” is employed following the claim of
Hawkins (2003: 378) that it is the more general term.
aspects of conversational organisation where the analysis of the phonetic design of talk has particular relevance. While a number of studies have provided insights into the relationship between phonetic design and transition relevance, less is known about the phonetic design of turn beginnings (which are given coverage in Chapter 4), and seemingly nothing at all about the phonetic design of the practices explored in Chapters 5 and 6 (practices dubbed postponed second pair parts and pivots, respectively), and little about their interactional uses.

Clearly, turn beginnings are relevant to understanding how turn transition occurs: in addition to signalling the end of a turn participants also need to respond to that signal appropriately, part of which involves designing and producing a response-beginning (see Chapter 4). Postponed second pair parts, an account of which is provided in Chapter 5, involve designing and producing a rather different kind of beginning: in this practice, rather than addressing the just-completed talk (which is the most frequent organisation in talk-in-interaction), talk is first produced which continues an earlier conversational tack. One task for the current speaker is to mark the beginning of talk which does address that just-completed turn at talk (i.e. to mark the beginning of the postponed second pair part). Pivots, examined in Chapter 6, involve the production of talk which can function simultaneously as the end of one unit of talk, and as the beginning of another (e.g. “what I’d like to have” in the utterance “that’s what I’d like to have is a fresh one”). Pivots, therefore, are a practice for continuing a turn past a point of possible grammatical and pragmatic completion (in the quoted example, this point is reached at the end of “that’s what I’d like to have”), this continuation being facilitated in part by masking the point of possible completion through features of phonetic design.

1.2 Pay-offs

This thesis — as both an exemplification of a particular methodological approach, and as a series of studies explicating the phonetic design and interactional uses of a range of practices and resources — has certain pay-offs for other areas of enquiry. It should be noted that a distinction is made here
between a PRACTICE and a RESOURCE. An element in a participant’s communicative repertoire (this being evidenced most commonly by its recurrence in talk-in-interaction) with a specialised application can be considered a practice; the features which contribute to the practice are resources. For instance, the ABRUPT-JOIN (Local & Walker 2004) can be described as a practice; temporal compression of talk (which is one of the features of an abrupt-join) is a resource.

As described in the previous section, this thesis is based entirely on data drawn from talk-in-interaction, and principally on conversation. As “the most natural, the most frequent, and the most widespread occurrences of spoken language” (Abercrombie 1963: 3) and the “primordial site of sociality” (Schegloff 1987a: 102; see also Schegloff 1982: 73; 1988a: 135; 1999: 407), an understanding of conversation should be one of the primary aims of linguistics. Indeed, Shriberg, in a quantitative study of speech disfluencies, supports this claim: “the ‘holy grail’ in linguistics research should include understanding how we communicate in everyday life” (Shriberg 2001: 167). Furthermore, the invention of dialogues in certain areas of linguistic research would seem to suggest a fundamental interest in how language might be used in interaction (for instance, in the field of pragmatics see e.g. Blakemore 1992; Sperber & Wilson 1986; Wilson & Sperber 2004 passim). This thesis focuses on the rigorous, empirical analysis of everyday conversation, and demonstrates a number of ways in which linguistic resources can be organised in order to achieve particular interactional goals: clearly, then, this could be viewed as a pay-off for linguistics.

There are also certain pay-offs for phonetics. For instance, certain relationships are established between the phonetic design of talk and its function in interaction. One consequence of these findings — enhanced by similar findings in much of the work cited in Section 1.4 — is that it raises the bar with respect to how seriously the interactional function of talk should be taken when dealing with the phonetic details of talk-in-interaction even in a putatively “interaction-free” approach to analysis. Taking interaction into account in such investigations might seem unnecessarily cumbersome, serving only to muddy the investigative waters. However, it is possible that by taking interactional function into account — either when collecting data or when
conducting analysis, or at both stages — some patterns could be shown to be all the more convincing, and cases which might otherwise go unaccounted for, or dismissed as outliers, explained by reference to the organisation of the interaction (see especially Local 2004a, where a series of phonetic phenomena are accounted for with reference to the organisation of talk-in-interaction).

Pay-offs for those already engaged in the analysis of interactional aspects of talk-in-interaction include consolidating existing understandings of phenomena for which some accounts have been given (Chapters 3 and 4), alongside analysis of phenomena which, it would seem, are yet to receive sustained analytic attention (Chapters 5 and 6). Together, these investigations contribute to the understanding of turn-taking and turn construction: both of which are long standing concerns in the analysis of conversation.

Having set out certain motivations and pay-offs of the investigations reported on in this thesis, the sections which follow are devoted to the discussion of certain terminological issues.

1.3 Terminology

A familiarity with certain terms and concepts related to the construction of turns at talk and turn-taking is required in order to make sense of what follows in subsequent chapters (Sacks et al. 1974 and Schegloff 1996 can be consulted for more detailed discussion of each of these terms and concepts; see also the glossary which starts on page 212 of this thesis). The prevailing view of talk-in-interaction is that it is made up of turns: single, recognisably complete strips of talk, or 'moves', usually produced by a single speaker. Turns often — but need not — correspond with other units of linguistic structure such as sentences, clauses, phrases, or single lexical items. Turns consist of at least one turn constructional unit (TCU): a unit of talk which could constitute a possibly complete turn. At the end of each TCU, turn transition, i.e. the shift of speakership from one participant to another, is said to be relevant (though not necessarily achieved). The point at which transition is relevant is referred to as a transition relevance place (TRP). A TRP marks the onset of the transition space: the space around the end of
one TCU and the beginning of another in which turn transition might legitimately occur.

1.4 Linguistics-informed Conversation Analysis

From this point onward the analytic framework in which this thesis resides will be referred to as Linguistics-informed Conversation Analysis (or, for short, LCA).¹ In addition to this thesis, the LCA approach is exemplified by papers in a number of collections, including Couper-Kuhlen & Ford (2004); Couper-Kuhlen & Selting (1996); Ford, Fox & Thompson (2002b); Ochs, Schegloff & Thompson (1996); and Selting & Couper-Kuhlen (2001), as well as other published output, including Clift (2001); Couper-Kuhlen (1992, 1993, 2001a,b); Curl (2003); Curl et al. (2004); Ford (2004); Ford, Fox & Thompson (1996); Fox (1987); French & Local (1983, 1986); Hayashi (2004); Jasperson (1998, 2002); Kelly & Local (1989b); Local (1986, 1992, 2004b); Local & Kelly (1986); Local, Kelly & Wells (1986); Local & Walker (2004); Local, Wells & Sebba (1985); Local & Wootton (1995); Ogden (2001, 2003, Forthcoming); Selting (1992, 1998, 2000); Szczepak (2000a,b, 2001); Tarplee (1989, 1993); Wells & Local (1993); Wells & Macfarlane (1998); and Wootton (1997, Forthcoming).²

One reason for adopting this term is that it provides a credible replacement for the previous titles which have been attributed to this work (e.g. “interactional linguistics”, “interactional phonetics”, “phonetics of conversation” and “phonetics of talk-in-interaction”). These titles are problematic for a number of reasons. First, by specifying the objects of enquiry as being

¹Where reference is being made to work in both the Conversation Analysis and the Linguistics-informed Conversation Analysis paradigms, the abbreviation (L)CA will be used.

²This list is selective rather than exhaustive. Furthermore, the work of practitioners of what might be considered mainstream Conversation Analysis has been excluded from this list. This separation of Conversation Analysis and LCA work is something of an artificial one, deemed necessary here to emphasise the work which is at the intersection of Conversation Analysis and what might be considered mainstream linguistics i.e. LCA; it certainly should not be taken to indicate fundamental differences between Conversation Analysis and LCA. The reliance of LCA on Conversation Analysis will become obvious throughout this thesis: LCA adopts many of the principles of Conversation Analysis, and none of LCA’s key features are designed to undermine or challenge Conversation Analysis.
drawn from conversation or talk-in-interaction the titles suggest such data is somehow deviant. This is not the case. As Local (2004a) writes:

“[T]he core domain of phonetics (and the primary data of linguistic interest) is conversation or talk-in-interaction. It is *anything else* which requires the locution “the phonetics of…” in order to mark its differentiation from “the most natural, the most frequent, and the most widespread occurrences of spoken language” (Abercrombie 1963: 3) (Local 2004a: fn 8, emphasis in original)

Second, specific reference to phonetics (or indeed any other domain of linguistic enquiry) in “phonetics of conversation/talk-in-interaction” and “interactional phonetics” undermines the fact that in conducting analysis no particular parameter (linguistic or otherwise) is focused on from the outset. Rather, as in Conversation Analysis, the analyst will typically engage in an initial stage of “unmotivated looking” where “no particular, preselected topics or phenomena are being searched for” (Psathas 1990: 3). It may well be that features which fall into some traditional domain of linguistics (grammar, phonetics etc.) play some particular role in the organisation of a specific aspect of interaction but this must be demonstrated on the basis of observable orientations of the participants.

Third, the titles “phonetics of conversation” and “phonetics of talk-in-interaction” say nothing about the analytic approach being taken — but rather only refer to the nature of the data placed under analysis. A large amount of other work which plainly does not adopt the LCA methodology would fall under this heading (see e.g. Bell et al. 2003; Docherty 2003; Docherty & Foulkes 1999, 2000; Docherty et al. 1997; Jurafsky et al. 2001; Koiso et al. 1998; Shriberg 2001), though neither their analyses nor their findings are concerned in any direct fashion with the consequences of the phonetic details for the development of the interaction.

Fourth, each of the previous titles in some way misrepresents the approach taken in these studies. For instance, and as with “Conversational Analysis”, “interactional linguistics” and “interactional phonetics” suggest that there is an “interactional” research methodology, rather than a research methodology which takes interaction as a focus. Heritage (1989) offers the following relevant remark:
“The term ‘conversation analysis’ is preferred to the sometimes used ‘conversational’ analysis since, within this field, conversation is the object of investigation rather than a research methodology.”

(Heritage 1989: 37, fn 2)

In contrast, referring to this work with the title of LCA avoids each of the pit-falls of the titles discussed in the preceding paragraphs. Furthermore, the title of “Linguistics-informed Conversation Analysis” captures a number of key features of this mode of enquiry, and the skills and interests of its practitioners: it represents the meshing of techniques of analysis and description developed within linguistics with the principles of Conversation Analysis, as described in Chapter 2.

1.5 Structure of the thesis and main findings

Chapter 2 sets out the methodology employed in the exploratory studies contained in later chapters, in terms of both the analysis of interaction (based on the principles and procedures of Conversation Analysis), and the analysis of phonetic details. Coverage of issues in representing talk-in-interaction on paper is also provided.

Chapter 3 provides an account of the phonetic markers of transition relevance in a set of utterances produced by a single speaker. While variability in the phonetic markers of transition relevance is observed (principally in terms of turn-final pitch movements), attempts to relate this variability to the action implemented by the talk fail; furthermore, it is not possible to show any consequence of choosing one design format over another.

Having examined turn endings in the previous chapter, Chapter 4 examines a set of turn beginnings, focusing on responses to requests in order to

7It has been pointed out that the title of “Conversation Analysis” is something of a misnomer, as all forms of talk-in-interaction (i.e. not only conversation) are viable objects of study within the Conversation Analysis framework (see e.g. Pomerantz & Fehr 1997: 64); for analyses of what might be referred to more properly as “talk-in-interaction” rather than “conversation” see the papers contained in Drew & Heritage (1992) and the references in Drew & Sorjonen (1997). Retaining the term “Conversation Analysis” reflects its widespread use, rather than its accuracy.
control for both action and place in sequence. Request-response beginnings are shown to be highly variable, but constrained in part by which of the two observed types of request they follow. Certain kinds of variability are shown to have consequences for the development of the interaction, though others are shown not to have such consequences; one outcome of the investigation is a move towards locating the boundary of meaningful phonetic variability.

Following the accounts of turn beginnings and endings, Chapters 5 and 6 are devoted to two different practices: postponed second pair parts (Chapter 5) and pivots (Chapter 6). One task for a speaker deploying a postponed second pair part is the marking out the postponed second pair part out as distinct from the preceding postponing-TCU: this is shown to involve certain pitch and loudness characteristics, along with certain other features. With regard to interaction, postponed second pair parts represent an opportunistic device for ensuring that some particular piece of talk gets to be produced while the slot to produce that talk is still available.

Chapter 6 provides an account of the phonetic design of pivots: stretches of talk which function as both the possible end of one unit of talk, and the beginning of another. Alongside certain grammatical and pragmatic features, (and in contrast to the previous chapters) phonetic design is set out as a criterial feature of the practice. The phonetic design of the practice involves the masking of transition relevance at the pivot-end, while also marking out a coherence with both the talk which immediately preceded it and the talk which immediately follows it to afford the pivot interpretation as both an ending and a beginning. Pivots are shown to cluster around assessments, enquiries, and reportings, though the possibility of their having a much more general application is raised and exemplified.

Chapter 7 summarises the thesis, discussing some of its limitations, and some of its wider implications. Taken as a whole, the thesis contributes to a better understanding of the relationship between the phonetic design of talk and its interactional function; it also demonstrates a methodology which can be used to more fully understand participants’ linguistic competences, as displayed and deployed in talk-in-interaction.
Chapter 2

Methodology

2.1 Introduction

This chapter sets out the methodology employed in the exploratory studies reported on in Chapters 3 to 6. The chapter is organised as follows: Section 2.2 deals with the analysis of interaction; Section 2.3 deals with the analysis of phonetic details; and Section 2.4 discusses some of the issues surrounding the representation of talk-in-interaction on paper, and presents the method of transcription which will be employed in later chapters.

Before outlining the two strands of the methodology, it is important to note that the analysis of interaction and the analysis of phonetic details are carried out in parallel at the analysis stage, rather than serially: it is not the case that one strand of the analysis is done first, but rather that the strands are interwoven. In some respects this integrated approach to analysis is not especially remarkable (though this aspect of the methodology is not generally stated explicitly), as all (L)CA practitioners working on audio or video recordings of talk-interaction engage in analysis of phonetic details, even when those details are not reported in detail or with consistent technical terminology. There is no talk-in-interaction without phonetics; therefore, there is no analysis of talk-in-interaction without analysis of phonetic details.
2.2 Analysis of interaction

“The fundamental objective of CA research is to explicate the ways in which, during the turn-by-turn progression of conversation, co-participants make sense of one another’s talk, and how they design their own turns at talk so as to be appropriate next moves.”

(Drew 1994: 750)

The analysis of interaction follows principles established within CONVERSATION ANALYSIS (CA), the main thrust of which is set out in the quotation from Drew (1994) above. There are many good introductions to CA which render lengthy discussion of CA unnecessary (those introductions include Drew 1994, 2004; Goodwin & Heritage 1990; ten Have 1999; Heritage 1984, 1989, 1995, 2002; Hutchby & Wooffitt 1998; Levinson 1983; Pomerantz & Fehr 1997; Psathas 1995; Wootton 1989). However, it may prove useful to reiterate some of the main principles of CA as set out by Heritage (1989):

“The basic orientation of conversation analytic studies may be summarised in terms of four fundamental assumptions: (1) interaction is structurally organised; (2) contributions to interaction are both context-shaped and context-renewing; (3) these two properties inhere in the details of interaction so that no order of detail in conversational interaction can be dismissed a priori as disorderly, accidental, or interactionally irrelevant; and (4) the study of social interaction in its details is best approached through the analysis of naturally occurring data.”

(Heritage 1989: 22)

These fundamental assumptions have given rise to a large body of work outlining the structural organisations of talk-in-interaction, while striving to demonstrate the orientation of participants to the analytic claims being made. The importance of the observable orientations of participants in CA is worth emphasising; one corollary of this position is that claims are not the result of intuition or introspection as to what the speaker had in mind when producing some utterance or performing some action. Rather, the claims arise from the careful observation of how that utterance/action
is treated by the participants, in terms of their observable responses and reactions. These observable responses and reactions do not necessarily equate to the actual interpretation of the initial utterance/action by a hearer. For instance, a participant may claim a particular response (e.g. “empathy”) while not actually feeling it. However, it is the response or reaction which is brought to the surface of the interaction which is the sole focus of enquiry.

Partly because of the availability of other introductions to CA, and partly because many of the finer points of CA can be gleaned from a consideration of the analyses themselves, discussion now turns to certain methodological issues which have a particular relevance for the analyses presented in Chapters 3 and 6. These issues concern the deployment and treatment of resources/practices as evidence for analytic claims (Section 2.2.1), the distinction between sequence organisation and sequential organisation (Section 2.2.2), and the qualitative nature of the analysis (2.2.3).

2.2.1 Deployment and treatment as evidence for analytic claims

One striking feature of the exploratory studies reported on in Chapters 3 to 6, and of (L)CA work more generally, is that the claims which are made, and the categories which are set up, are grounded in the observable behaviour of the participants themselves. Evidence must be sought from the behaviour of the interactants in order to warrant any aspect of the analysis.

This section establishes two sources of evidence, both of which will prove central to the exploratory studies reported on in Chapters 3 to 6. These two sources of evidence are the deployment of a resource/practice in talk-in-interaction on the one hand, and the treatment of a resource/practice on the other. Essentially, deployment is the sheer occurrence of some resource/practice; treatment is how a recipient responds to the resource(s)/practice(s).

The strongest analytic accounts of talk-in-interaction provide evidence of participants’ orientations to the resource/practice from both sources: they show how a resource/practice is deployed, and how it is treated by participants. However, there are occasions where the deployment of a re-
source/practice and its treatment do not match up, and where an over-emphasis on the necessity of showing evidence from deployment and from treatment might actually obscure organisational features of the talk. It might seem quite obvious to the analyst what is going on in the talk, but the participant is not responding in that way: there is no obvious orientation to what the analyst can see is being done in the talk. Consider Fragment 1. A boy of around 10 years old has called a radio phone-in show. As part of his call, he recounts (apparently reading aloud) the details of a number of technology projects from around the world.

(1) NO.2.02.spyplane-378s

1 AR: what else
2 (0.3)
3 Call: e::h the most intelligent robot
4 (0.2)
5 AR: uh huh
6 (0.2)
7 Call: [it’s based in Massachouta
8 AR: [huh
9 (0.3)
10 Call: I think [institute]
11 → AR: [Massachoot]a (.) right
12 (0.8)
13 → AR: [is that is] that in Ameri?:ta
14 Call: [e : : h]
15 (0.4)
16 Call: I think it is=
17 AR: =I think it is right
18 Call: .hhh e::m it’s an ins(ti)tute of technology of
19 M.I.T. .hh
20 AR: right
21 Call: Cambridge (.) and e:h the U.S.A.

One candidate practice at work here, in the talk shown at lines 11 and 13, is what might be dubbed “recycling another’s error”. In his talk at line 7 the caller appears to mispronounce “Massachusetts”. This pronunciation error is then recycled by AR (the presenter) in his talk at line 11. The caller having apparently missed the point of the recycled error, AR recycles the error again in a follow-up enquiry: “is that in Ameri?:ta” (line 13). To the analyst and outside observer, it is clear that both recyclings of the error represent a tease

1The method for transcription in this thesis is discussed in Section 2.4; the conventions are set out in Appendix A.
Chapter 2. Methodology

of some kind, by AR and directed at the caller. The jocose character seems to be heightened by the mispronunciation of “Massachusetts” being an error which AR could have let pass: given that AR can recycle the error and, more importantly, incorporate the error into his own frame (“Ameriʔ:ta”, line 13), the caller’s error clearly has not hampered AR’s ability to understand what has been said.

However, for all the recyclings of the error can be seen by an outside observer to be deployed as teases of the caller, they are not treated by the caller as teases. For instance, the caller does not respond to either of the teases with laughter, a ‘po-faced’ receipt (Drew 1987), or even correction of his error. It would seem, therefore, that the tease has gone over the head of the caller. This makes analysing this fragment difficult if there is an insistence on providing evidence from both the deployment and the treatment of the practices. In this case, only the deployment of the practice (the recycling of another’s error) offers any real insight into its function. Because of cases like this, it should be registered that while providing evidence from both the deployment and the treatment of practices in talk-in-interaction might be considered the usual aim, there may be cases where evidence for participants’ orientations to some practice would appear to lie only in its deployment (as in this case), or its treatment.

Fragment 2 provides an example in which the treatment of some bit of talk is transparent, but where that treatment may be at odds with the initial deployment. The issue surrounds the referent of Ros’ “which end of the corridor does she live” (line 13).

(2) Labtalk.GW-67s

1 Ros: I’ve just played netball with Liz off your
2 corridor
3
(1.3)
4 Jen: yeah
5 (0.3)
6 Ros: little (0.2) [Liz
7 Jen: [yeah
8 (1.1)
9 Jen: yeah I get her and Debbie mixed up
10 (0.3)
11 Jen: cos I think (.) she should be called Debbie and
12 Liz sh-.hhh Debbie should be called Liz
13 → Ros: which end of the corridor does she [live=
Chapter 2. Methodology

At the point of production of “which end of the corridor does she live” (line 13), Ros’ own most recent talk has been about Liz, but Jenny’s immediately prior talk (lines 11 to 12) has made reference to both Liz and Debbie. Jenny’s response (“other end but there’s another Debbie at my end”, lines 16 to 17) makes it clear, through her reference to “another Debbie”, that she is treating Ros’ enquiry as having been about Debbie. So, if consideration is only afforded to the treatment of Ros’ talk by Jenny, then Ros’ enquiry would seem to have been about Debbie. However, it is possible that she is actually enquiring about Liz, particularly given that she might have more of a reason to want to secure information about Liz: she has met her only recently as part of a sports team, and might have good reasons to seek background information on her. Indeed, the kinds of resources and practices identified by Fox as allowing unambiguous anaphora in the environment of same-gender referents are conspicuous in their absence in this case (Fox 1987: 48–62). So, while we can see that the pronouns are treated in one particular way in this case, the way they were deployed may be at odds with that. Again, if we insisted on always grounding claims in the treatment and deployment of linguistic resources in all cases, an account of the interaction which is not the most felicitous might result.

Instances of talk-in-interaction such as those in Fragments 1 and 2 suggest that discretion is required concerning the necessity of seeking and providing evidence from treatment and deployment in some cases, and the necessity of seeking and providing evidence from treatment or deployment in others. More importantly in the context of this thesis, it emphasises the fact that evidence of participant orientations can come in terms of both treatment and deployment of practices; in the exploratory studies reported on in Chapters 3 to 6 evidence of both types is sought and employed in warranting the analytic claims which are made.
2.2.2 Sequence organisation and sequential organisation

Reference is made in later chapters to both sequence organisation and sequential organisation. As each of these labels refers to a particular level of organisation in talk-in-interaction, it is necessary to attempt to make clear the distinctions.

Sequential organisation concerns the arrangement of turns relative to each other (Schegloff 1995b: 2–3). Sacks (1987) describes “sequential” as follows:

“‘Sequential’ means roughly that the parts which are occurring one after the other, or are in some before and after relationship, have some organisation between them.” (Sacks 1987: 54)

So, for instance, a question usually precedes an answer, and not vice versa; greetings usually precede farewells, and not vice versa. Turn-taking is considered to be one kind of sequential organisation (Schegloff 1995b: 2–3).

Sequence organisation refers to courses of action with a particular shape or trajectory (Schegloff 1995b: 2–3). Jefferson (1972: 304) describes “sequence” as follows:

“The term ‘sequence’ refers to events…which belong together and follow one after another. They do not just happen to occur one after another.” (Jefferson 1972: 304)

The adjacency pair is considered to be one kind of sequence organisation (Schegloff 1995b: 2–3; see Section 3.4.3 for discussion and exemplification of adjacency pairs).

The reason for differentiating between the two is that sequential organisation is concerned with the occurrence of events in time (e.g. the occurrence of turn\(_a\) before, or after, turn\(_b\)); sequence organisation is concerned specifically with the coherence which might hold between two events (e.g. the relationship which holds between turn\(_a\) and turn\(_b\)).

2.2.3 The qualitative nature of the analysis

Schegloff (1988b) remarks that
Chapter 2. Methodology

“it is critical to recognize that CA enquiry is examining data fragments as representations of singular strips of talk in interaction, subjected to repeated detailed scrutiny in their singularity. Such inquiry tries to make sense of how these strips of talk are organized, what their participants are doing moment by moment, how the episodes have come to have the trajectories they have. These segments of talk-in-interaction are CA’s units of work.”

(Schegloff 1988b: 116, emphasis in original)

This thesis proceeds in accordance with each of the points made in the quotation; however, only the issue of “singularity” is taken up for discussion here.

As is typical for work in the (L)CA framework, the exploratory studies reported on in Chapters 3 to 6 are essentially qualitative in nature (cf. especially the essentially quantitative accounts of unit-boundary phenomena provided by Koiso et al. 1998 on Japanese and Caspers 2003 on Dutch). There are two main reasons for proceeding in this way. First, setting the basis for statistical analysis of the phenomena dealt with in this thesis in a way which is informed and informative in terms of representing the actions of participants is highly problematic; a particularly eloquent account of some of these problems can be found in Schegloff (1993). Second, no statistical, quantitative measure of frequency of occurrence alters the fact that an episode of talk-in-interaction occurred in that way on that occasion for those speakers (Schegloff 1987a, 1993; Wootton 1989). Furthermore, that singular occurrence is the result of a set of resources and practices available to those participants for so conducting interaction. These communicative resources and practices, even if displayed only on that occasion, require an analytic account (Wootton 1989). However, only a qualitative approach can capture these features. The result of a conducting analysis of data-sets in a qualitative fashion is an account which handles single strips of interaction as cogently as it does the aggregate.
2.3 Analysis of phonetic details

Having outlined some of the main features of the analysis of interaction, this section provides some discussion of the analysis of phonetic details. Section 2.3.1 discusses issues concerning the auditory analysis of data drawn from talk-in-interaction; Section 2.3.2 describes and justifies the acoustic techniques employed in analysing the data.

In the framework adopted in the current investigation, the phonetic analysis of talk-in-interaction is performed alongside the analysis of interaction. The phonetic analysis is conducted in a parametric fashion (Abercrombie 1964; Kelly & Local 1989a,b), employing impressionistic and acoustic techniques as described in this section. Crucially, the phonetic analysis affords no primacy to any particular phonetic parameter; in presenting phonetic details, the focus on some particular phonetic characteristic reflects the outcome of the analysis (in terms of the relevance of that particular characteristic for the participants), rather than reflecting a restriction on the details explored.

The phonetic analysis reported in this investigation is the result of detailed, parametric impressionistic observation (Abercrombie 1964; Kelly & Local 1989d), made during repeated listening to digitised speech samples via the Praat (version 4) phonetic analysis system, assisted where necessary by inspection of waveforms, spectra, F0 traces and other appropriate acoustic records.\(^2\) The impressionistic transcriptions and descriptions are supplemented in a number of places by quantified measures and visual representations of a variety of acoustic parameters, all made using the Praat phonetic analysis system.

2.3.1 Auditory analysis

The analysis of phonetic details is done (primarily) auditorily, impressionistically, and parametrically, supplemented by acoustic evidence. There are three reasons for conducting the analysis in this way:

1. Auditory analysis reflects what is (auditorily) available to participants in conversation.

\(^2\)Praat can be downloaded free via the World Wide Web: see http://www.praat.org.
Chapter 2. Methodology

2. The outputs from acoustic analysis may not necessarily map in a straightforward fashion to participants’ auditory percepts (see e.g. Johnson 1997: 49–61 for an overview of some of the discrepancies between acoustic and auditory representations).

3. The necessarily non-experimental nature of the data can result in small numbers of comparable instances. While effective quantified phonetic analysis relies on the availability of large numbers of comparable cases, auditory analysis can be conducted on any number of cases. The account of Fragment 1 provided above demonstrates the importance of inspecting the phonetic details of each instance on its own terms; in an analysis based on large-scale quantified phonetic techniques, the details and significance of the glottal closure in “Ameri?:ta” may have been left unexplained and unaccounted for.

The following two sections offer some discussion of the emphasis on impressionistic observation and on parametric observation.

The emphasis on impressionistic observation

One key feature of this approach to observation and record-making is that there should be as little prejudgement as is possible as to which details are relevant in the organisation of the structures under inspection. This open-mindedness during the analytic stages is driven by the belief that it is not possible to know at the outset of an investigation which details may be analytically important.3

3This open-mindedness in conducting phonetic observation sits comfortably alongside CA, where “no order of detail in conversational interaction may be dismissed a priori as disorderly, accidental, or interactionally irrelevant” (Heritage 1989: 22). Indeed, that particular feature of CA encourages the meshing of CA and impressionistic phonetic techniques.
The emphasis on parametric observation

The open-mindedness as to the potential relevance of any details in the speech signal which drives impressionistic observation is also the impetus for the conducting of **PARAMETRIC OBSERVATION** (see Abercrombie 1964 for an early use of the term **PARAMETER** in this regard). Parametric observation consists of deconstructing the phonic material into its component parts, or

“listening to speech in terms of independently varying auditory and movement parameters and not in terms of unanalysed, static postures and transitional glides.” (Kelly & Local 1989b: 202)

Parametric observation encourages observation without reference to the *a priori* decisions about how phonetic parameters interact with, and are deployed relative to, each other embodied in a segmental approach. The parametric approach to phonic material has yielded significant advances in our understanding of the role of phonetic details in conversational speech (see, for instance, Curl 2004; Curl et al. 2004; Kelly & Local 1989b; Local 2004a; Local & Kelly 1986; Local et al. 1986; Local & Walker 2004; Ogden 1999, 2001; Simpson 1991, 1992; Tarplee 1993; Walker 2004; Wells & Macfarlane 1998).

2.3.2 Acoustic analysis

This section sets out the methodology behind acoustic analyses presented in this thesis. Before proceeding, however, three issues require discussion.

First, it is important to recognise the difficulties in producing defensible quantified acoustic measures over the kinds of data studied here. As a result of the emphasis on the naturalness of data, the data being worked with have three characteristics, each of which have implications for attempting quantified acoustic analysis.

1. As the data are non-elicited there is no guarantee that sufficient comparators for quantified analysis will emerge from the corpora.

2. The data are recorded in a wide variety of conditions, which affect the acoustic properties of the speech to different degrees and in different
ways (e.g. different means of recording the data; the presence of ambient noise; in the case of telephone recordings, the distance from the speaker’s mouth to the handset is unconstrained and variable).

Second, approaching data with the kind of open-mindedness described above can result in a need to represent impressionistic percepts for which there is no agreed way of presenting these details – particularly in the case of articulation rate and loudness. Furthermore, it is not the aim of the current investigation to extensively test methodologies for the quantification and presentation of these details; rather, for each parameter a consistent methodology which seems to capture and support impressionistic percepts is aimed for. In sum, the acoustic measures, where presented, are intended to be taken as corroborative evidence for claims made on the basis of impressionistic listening.

Third, given that acoustic measures are being used to support impressionistic percepts, it might be wondered why quantified acoustic measures are being presented at all. In offering quantified measures the work presented here may be more accessible to phoneticians who are more familiar with such modes of presentation. Also, comparing impressionistic judgements against appropriate acoustic records at the analysis stage ensures that auditory percepts do not stray too far from the physics of the speech signal. Furthermore, the acoustic analyses presented in this thesis take into account, as far as is reasonably possible, what is known about the auditory system to ensure a closeness-of-fit between those analyses and what listeners are understood to perceive.

In what follows, techniques for the analysis, description, and presentation of fundamental frequency (F_0), intensity, duration, and articulatory details are outlined.

Fundamental frequency (F_0)

Fundamental frequency (F_0) traces are presented in Hertz (Hz) and scaled logarithmically, the bottom and top lines representing the baseline and topline of that speaker’s range, with a dashed line representing the median
Chapter 2. Methodology

F_0 from the sample used to establish values for that speaker’s range.\(^4\) Each of these decisions is explained in turn.

The F_0 traces are scaled logarithmically to account in some way for non-linear perception of pitch, whereby listeners perceive a greater change in perceived pitch at lower frequencies. For instance, a frequency change from 200 Hz to 210 Hz is perceived as a greater change in perceived pitch than from 400 Hz to 410 Hz, even though the change in frequency is the same (Baken & Orlikoff 2000: 148–149; Hayward 2000: 46–47; Howard 1998: 345–347; Nooteboom 1997: 645). For this reason, comparative frequency measures are presented in semitones (ST) as this is also a non-linear scale; an increase of 12 ST (1 octave) represents a doubling in perceived pitch.

The F_0 traces are plotted relative to the baseline and topline of that speaker’s range; a dashed line indicates the median F_0 for that speaker. By displaying F_0 plots in this way, some indication is given of the placement of the talk within the speaker’s own speaking pitch range. Placement of talk within a speaker’s range, rather than a raw measure of F_0, has been shown to have interactional significance (see e.g. Couper-Kuhlen 1996; Local 2004a) and is a mode of measurement endorsed in the acoustic phonetics literature (see e.g. Baken & Orlikoff 2000: 167–185; Howard 1998: 345–347).

As suggested by Baken & Orlikoff (2000: 168–172) the median is used as a mid reference point rather than, for instance, a mean value.\(^5\) Unlike a median value, a mean is viable only when the values have a normal distribution. There is no reason to assume that the distribution of F_0 values within a speaker’s pitch range follow a normal distribution i.e. with the most common F_0 value equidistant from the baseline and topline, and with a symmetrical spread of values on either side. If there is a skewed distribution of F_0 values (i.e. more values towards the baseline or the topline) then the mean value can be artificially deflated or inflated (respectively). It can be seen from Table 1 that the median value (132 Hz) for Gordon — the speaker focused on in Chapter 3 — is lower than his mean value (139 Hz), which suggests a distri-

\(^4\)The perceptual correlate of F_0, or fundamental frequency, is pitch; however, as the following sections show, the mapping between F_0 and perceived pitch is not entirely straightforward.

\(^5\)Accordingly, later references to, or comparisons with “mid” will refer to this median pitch.
bution of pitch values which is skewed towards his baseline. This is shown in Table 1, which presents the distribution frequency of Gordon’s F₀ values.

<table>
<thead>
<tr>
<th>F₀ (Hz)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>76</td>
</tr>
<tr>
<td>max</td>
<td>399</td>
</tr>
<tr>
<td>mean</td>
<td>139</td>
</tr>
<tr>
<td>median</td>
<td>132</td>
</tr>
<tr>
<td>stdev</td>
<td>37</td>
</tr>
</tbody>
</table>

Table 1: Pitch range measures for one speaker

in Figure 1, which presents the distribution frequency of Gordon’s F₀ values.

Figure 1: Distribution of F₀ values in one speaker’s range

The measurements of topline, baseline, and median for each speaker were made on the basis of hand corrected F₀ traces for one minute of

Indeed, this was the case for all speakers whose pitch ranges were calculated in preparing this thesis.
representative speech from that speaker. In all cases, F\textsubscript{0} traces were hand corrected on the basis of (a) auditory comparison of the synthesised F\textsubscript{0} and the original audio and (b) visual inspection. Hand correction was required most often where non-modal voice quality (especially creaky voice) was apparent (see Ladefoged 2003: 75–90 for discussion of some issues in the interpretation and hand correction of F\textsubscript{0} traces).

In describing pitch characteristics in this thesis, the following terms are employed:

SPEAKER’S RANGE: the pitch values which lie between a speaker’s baseline and topline pitch, established on the basis of the techniques described above;

PITCH CONTOUR: the overall shape of some pitch movement (e.g. falling, rising, rising-falling, falling-rising, level);

PITCH RANGE: the distance between the minima and maxima for some bit of talk;

PITCH HEIGHT: the placement of some bit of talk in the speaker’s range, typically described relative to the topline, baseline, or midline;

When a more general term is required to refer to more than one of these features simultaneously, **PITCH CONFIGURATION** will be used.

Intensity

The quantification of loudness (typically in terms of intensity) is notoriously problematic:

"**Loudness** is a perceptual attribute that cannot be measured instrumentally; it can only be assessed by the listener. The psychophysical scaling of loudness is very complex. In addition to the sound power, loudness is strongly influenced by the fundamental frequency and the spectral properties of the stimulus....loudness does not grow linearly with intensity."

(Baken & Orlikoff 2000: 94, emphasis in original)

In recognition of these factors, impressionistic descriptions of loudness are employed throughout.
Chapter 2. Methodology

Duration and articulation rate

Duration is measured from the speech-pressure waveform while listening to audio playback; Appendix B provides a summary of the criteria employed in segmenting waveforms.

Currently, there is no agreed way of computing articulation rate in any fashion which is appropriate for speech which is not produced under experimental conditions, with the result that discussion will typically proceed on the basis of auditory analysis (see e.g. Auer 1990; Auer, Couper-Kuhlen & Müller 1999; Couper-Kuhlen 1993; see Dankovičová 2001: 5–7 for a review of instrumental techniques). Auditory analysis of articulation rate is supplemented by two measures:

1. measurements in metrical feet per second (fps): these measures are the inverse of the time from the onset of one stressed vowel to onset of the next stressed vowel (cf. Auer et al. 1999; Couper-Kuhlen 1993), or the onset of silence (whichever comes sooner). The decision to mark these particular points is somewhat arbitrary, though it helps to maintain consistency, and (ii) vowel onsets are relatively easy to identify on a speech-pressure waveform, even in poor quality recordings.

2. syllables per second (sps): these measures are the inverse of the time from the onset of vowel to onset of next vowel (irrespective of stress), or the onset of silence (whichever comes sooner). These measures are used when a smaller temporal window is required than that provided by the foot: for instance, where impressionistically observable tempo changes in articulation rate occur in a domain which is not coterminous with, but rather enclosed within, the foot.

Where raw duration measures are presented, these will be in milliseconds (ms).

Articulatory details

In later chapters, certain articulatory details are transcribed in accordance with the conventions of the International Phonetic Alphabet (IPA) (International Phonetic Association 1999), with the addition of \(<\) and \(>\) placed be-
neath IPA symbols to indicate increasing and descreasing loudness respectively as in \([X]\) and \([\dot{X}]\), where \(X\) stands for any IPA symbol. The transcription are supported, where appropriate, by (i) speech-pressure waveforms, and (ii) wide-band spectrograms presented above the corresponding speech-pressure waveforms.

2.4 Representing talk-in-interaction on paper

The remainder of this chapter is devoted to the discussion of issues in representing talk-in-interaction on paper. Section 2.4.1 sets out some features which are taken to be desirable features of a system for transcribing talk-in-interaction; Section 2.4.2 reviews a particular transcription system which is prevalent in (L)CA; and Section 2.4.3 sets out the transcription system which will be employed in this thesis.

Before proceeding, two general points should be registered. First, any transcription should be considered an *aide memoir* i.e. as a readable reference point and as a tool to facilitate discussion of phonic material both orally and in print. Most importantly, the transcription should not be considered to be “the data” (for versions of this assertion, see Abercrombie 1954; Abercrombie 1967: 127; Kelly & Local 1989a: 92; Psathas 1990: 8; Hutchby & Wooffitt 1998: 73; Coates & Thornborrow 1999: 594-595). Second, the discussion of transcription systems presented in this section refers only to what have been called *presentation transcriptions* — the transcriptions used in representing phonic data in print — as opposed to *working transcriptions* which are those records produced by practitioners in the course of doing analysis (Ball & Local 1996; Kelly & Local 1989a). From this point onward “transcription” is used as a shorthand for “presentation transcription”.

7It is not obvious that CA practitioners make such a distinction between presentation and working transcriptions; some consequences of this are discussed in what follows.
2.4.1 Desirable features of a system for transcribing talk-in-interaction

A transcription system to be employed in transcribing talk-in-interaction should have the following characteristics:

1. It should be applicable to a range of non-elicited data.
2. It should be consistent.
3. It should not prejudge the relevance of (phonetic) details by being limited to the handling of some details and not others.

In addition, the transcriptions yielded by adhering to the conventions

4. should be easily readable;
5. should be suited to their particular purpose i.e. the transcriptions should capture only that level of detail which facilitates discussion and appraisal of the particular point(s) being made.

These features form the backdrop for the sections which follow. Section 2.4.2 provides a review of a system for transcribing talk-in-interaction which is prevalent in the (L)CA literature; Section 2.4.3 sets out the system adopted in this thesis.

2.4.2 Review of the Jefferson transcription system

Perhaps the most common system for transcribing details of talk-in-interaction is the one most commonly attributed to Gail Jefferson, and is therefore referred to here as the JEFFERSON TRANSCRIPTION SYSTEM. An early glossary of these conventions can be found in Sacks et al. (1974: 731–734), and a more recent one in Jefferson (2002: 1377–1383) (a comparable glossary can be found in Atkinson & Heritage 1984: ix–xvi; see also Selting 2000: 515–516 for a slightly different set of conventions which significantly overlaps the Jefferson system). Fragment 3 provides an example of Jefferson’s modified Roman orthography system in action and is typical of the kind of transcription utilised within the CA community and literature; the transcription was made by Jefferson in the process of transcribing the Holt corpus (see
Appendix C for a description of various data corpora, including the Holt corpus).

(3) Holt.May.88.2.4-34s

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Les: I’ll hand you o[ver Deena</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Dee: [0]Kay</td>
<td>dea:r.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(): (lhhu{lhhee)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(): [wth wuhh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Les: Here we are,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Dee: 0:ka:y,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>(0.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Mar:</td>
<td>Hello:</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>(0.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Dee:</td>
<td>Skip indeed I’m not calling you Skip you old bugg</td>
<td>er</td>
</tr>
<tr>
<td>12</td>
<td>(0.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Mar: hhahh _heh!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>(0.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Dee: _How _are _you.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are a number of favourable features of the Jefferson transcription system, many of which are exemplified by Fragment 3.

First, the system can be, and has been, applied to a range of non-elicited data, including (but not limited to) telephone interactions, face-to-face interactions, everyday conversation, institutional talk of various kinds, two-party interactions, multi-party interactions (i.e. interactions involving more than two parties), audio-only data, and video data (with appropriate extensions for visual features).

Second, the transcription is fairly straightforward to read, if the speaker is fluent in the language being transcribed, and after some contact with transcriptions using this system along with the corresponding audio recordings.

Third, the transcriptions which are produced under this system are by and large suited to their purpose. That is, they capture sufficient details to facilitate discussions (either orally or in print) at a level suitable for many practitioners.

Fourth, the transcription is consistent with regard to the representation of certain details, and especially those details of temporal organisation (e.g. numbers in parentheses indicating elapsed time in seconds, vertically aligned left square brackets indicating the point of onset of overlapping talk).
Fifth, the system allows for the capturing of certain finer phonetic details by way of symbols. Evident in Fragment 3 are (i) upward and downward pointing arrows to represent pitch movements to “especially high or low” pitch (Jefferson 2002: 1379) (ii) commas and periods to mark aspects of intonation (iii) underlining to mark “punching up” (Jefferson 2002: 1379), and (iv) colons to mark “prolongation” of sound.

However, as with any transcription system, it is not without its limitations. Certain fine phonetic details, and the temporal co-ordination of some of those details, would appear to be rendered in a non-systematic fashion (see also Kelly & Local 1989b; Local & Kelly 1986 for a comparison of the details captured under the Jefferson transcription system, and an IPA-like system; see Coates & Thornborrow 1999, Kelly & Local 1989a: 54–5, and Tarplee 1993: 79–87 for discussions of the Jefferson transcription system in general). The following are among the questions which arise from considering transcriptions made under the Jefferson transcription system, most of which arise from the inspection of the transcription of Fragment 3.

How is the absence of a final punctuation mark at the end of an utterance turn to be interpreted? For instance, in the talk transcribed in line 1 there is a clearly audible fall in pitch over the extent of “Deena” (a fall which measures 3.1 ST) though there is no form of marking to represent this.

Are arrows and punctuation interchangeable? In line 12 there is no final punctuation mark, but there is an upward arrow preceding the final syllable of the turn. If arrows and punctuation are interchangeable, are other symbols?

Over what extent do the arrows preside? That is, how long does the “especially high or low” pitch which they symbolise last?

Why is pitch not tracked throughout the course of an utterance, but rather only at selected points? Pitch is a distributed feature rather than a punctual one, and pitch characteristics are associated with any speech produced with vibration of the vocal folds. However, transcriptions of pitch under the Jefferson transcription system would seem to only be made at selected points i.e. (i) at the ends of utterances or before other kinds of hiatus, and (ii) when there is markedly high or low pitch. This leads to two further queries: (i) does this embody a hypothesis that these are the only points where pitch characteristics have functional significance? and (ii) how are these points “joined” in
Chapter 2. Methodology

terms of the pitch characteristics of the vocal activity transcribed between the pitch symbols.

How is the use of upper case to be understood, given that there are at least three features which upper case would seem to indicate? These features are

1. starts of turns at talk;
2. proper nouns and first person singular pronouns;
3. “especially loud sounds relative to the surrounding talk” (Jefferson 2002: 1380).

The first two of these usages are evident in Fragment 3; the third can be seen in Fragment 4.

(4) NB.II.3-2s

<table>
<thead>
<tr>
<th></th>
<th>Lot:</th>
<th></th>
<th>Emm:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>...lo:</td>
<td></td>
<td>G’morning Letitia= ((smile voice))</td>
</tr>
<tr>
<td>2</td>
<td>=u.-hHow’r YOU:=</td>
<td></td>
<td>FI:NE HOW’R [YOU]:</td>
</tr>
<tr>
<td>3</td>
<td>Lot:</td>
<td>=eh he:h heh WUDIYIH kno:w:=</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Emm:</td>
<td>=.hhh Jis got down last nigh:teh</td>
<td></td>
</tr>
</tbody>
</table>

In Fragment 4 is the initial “F” of “FI:NE” (line 4) in upper case because it has characteristics of especial loudness relative to the surrounding talk, or because it is turn initial? It might seem, given that the talk which follows is in upper case, that it is for the former reason i.e. because it is especially loud relative to the surrounding talk. However, it is quite possible that cases could

8 The use of upper case to mark the starts of turns at talk and to indicate proper nouns and first person singular pronouns is not actually referred to in symbol glossaries cited above, i.e. Atkinson & Heritage (1984: ix–xvi); Jefferson (2002: 1377–1383); Sacks et al. (1974: 731–734); but the regular deployment of upper case in these positions makes these usages a sufficiently strong possibility to list them here. Indeed, there is a proliferation of such uses of upper case in Fragment 3 alone.

9 Similar descriptions can be found in Atkinson & Heritage (1984) and Sacks et al. (1974):

“[u]pper case indicates increased volume” (Sacks et al. 1974: 733)

“capital letters are used to indicate an utterance, or part thereof, that is spoken much louder than the surrounding talk” (Atkinson & Heritage 1984: xii)
arise in which a turn-initial sound does not have these characteristics, but
the talk which follows does, and yet that initial sound would, presumably,
be represented by a character in upper case by virtue of it being turn-initial.

Similar confusion arises in other parts of Fragment 4, also resulting from
this multiple employment of the same convention. For instance, is the initial
“G” of “G’morning” (line 2) in upper case because it is turn initial or because
it has characteristics of especial loudness relative to the surrounding talk? If
not, and if it is in upper case by dint of being turn-initial, then how would a
turn-initial sound which does sound especially loud relative to the surround-
ing talk be marked? Likewise, is the “L” of “Letitia” in upper case because
it is a proper name, or because it is especially loud relative to the prior talk?
Clearly, this kind of multiplicity is something which should be considered,
and avoided if possible.

What is the status of the modifications to the orthography? There are instances
where orthography is modified, presumably to represent particular aspects
of sound production where it is felt that they deviate sufficiently from the
pronunciations which the standard orthography might be taken to repre-
sent. For instance, in Fragment 4, “Jis” (line 6) — which might be taken to
be a representation of “just” — is, presumably, modified to capture a vowel
which is more front than might be interpreted on encountering the transcrip-
tion “just”; likewise, it would see from the transcription that there is no final
alveolar plosive which might be taken as implied in a transcription as “just”.
However, in other cases where there is an even more gross mismatch be-
tween regular spelling conventions and the pronunciation, the bulk of the
original spelling is retained: “ni:ght” (line 6) is a case in point.

A further limitation of the Jefferson transcription system concerns the ap-
propriateness of the details being captured to the purpose to which they are
being put. In print, it seems customary to provide detailed transcriptions
employing the full gamut of the Jefferson transcription system for whatever
talk is being presented. This seems unnecessarily burdensome, given that the
transcribed details in many of these lines of transcript would seem to have
no bearing on the particular analytic points being made. It would seem more
appropriate to provide a detailed transcription of those parts of the interac-
tion where they are necessary to make sense of, and to evaluate, the analysis
being proposed.10 Furthermore, the capturing of maximum detail (under the Jefferson transcription system) at all points seems, if anything, to undermine the status of the transcription as an aide-memoire rather than as the data itself. Presumably, this employment of overly elaborate transcriptions in print results from the apparent failure to distinguish between working transcriptions and presentation transcriptions.

A further limitation of the Jefferson transcription system is that, as has been made explicit on previous occasions, transcriptions made under this system have failed to capture certain regularities of phonetic detail which have a bearing on the organisation of interaction (Kelly & Local 1989\textit{b}; Local & Kelly 1986).

In these ways, then, it would seem that the Jefferson transcription system — as it stands — is not ideal for use in preparing presentation transcriptions. Despite the inconsistencies and drawbacks of the system, it is worth emphasising that the attention to detail paid by some CA practitioners when listening to data and constructing analyses is not at issue here (and see e.g. Jefferson 1996 for an example of attention to detail typical of practitioners of CA); inconsistencies in the modified orthographic transcriptions are not taken \textit{prima facie} as indexing ignorance of the presence or significance of particular phonetic details. Furthermore, the proposal to curb the presentation of detail in transcriptions where its presentation is inappropriate should not be taken as any kind of endorsement of a phonetics-free approach to talk-in-interaction.

2.4.3 Transcription system adopted in this thesis

The Jefferson transcription system seems to impose too many limitations on the representation of phonetic details for the purposes of the current investigation, principally in terms of (i) the consistency of symbol use, (ii) the appro-

10This view of omitting irrelevant details from presentation transcription gains support from the following:

"unless phonetic or prosodic quality is central to the researcher’s analytic focus, or significantly marked in some way, little is to be gained by deviating from the standard orthography"

(Coates \& Thornborrow 1999: 595)
priateness of the details which appear in transcriptions to the analytic task in hand, and (iii) the ability to represent all details which might be noticed through the application of a parametric impressionistic approach to observation. This section sets out the transcription system adopted in this thesis.

The mode of transcription adopted here consists of two parts: the first is referred to as an unadorned orthographic transcription, and is the kind of transcription most commonly used in discussing aspects other than fine phonetic details, e.g. the sequential organisation of talk. The second is referred to as an enhanced orthographic transcription and is the kind of transcription used principally where fine phonetic details are being discussed.

Unadorned orthographic transcriptions

UNADORNED ORTHOGRAPHIC TRANSCRIPTIONS include as little detail as is required for the reader to make sense of the data and evaluate the arguments being presented. In doing this, they

1. are enhanced in terms of their readability;

2. prejudge as little as possible the relevance of particular phonetic parameters, not by including details, but by excluding details: this exclusion of details at as many levels as possible (e.g. exclusion of details of pitch contour, pitch range, loudness, articulation rate, articulatory characteristics etc) side-steps the possible implications of certain features having greater significance than others with regard to the organisation of interaction;

3. underline the fact that the transcriptions are a necessary abstraction from, and visual representation of, phonic data, and not the data itself.

These relatively simple presentation transcriptions should not be taken as advocating the ignoring of details; rather, they represent an abstraction from, and visual representation of, phonic data which is deemed sufficient to make an analytic point. Likewise, further analytically relevant details are captured under a more sophisticated method of transcription set out in the following section.
Chapter 2. Methodology

Fragment 5 shows an unadorned orthographic transcription of the spate of talk represented under the Jefferson system in Fragment 3.11

(5) Holt.5.88.2.4-34s

As can be seen in Fragment 5, the unadorned orthographic transcription has means — based on the Jefferson system — of capturing details such as (i) which participant produced each utterance, (ii) periods of silence, and (iii) overlapping talk.

Unadorned orthographic transcriptions give only the vaguest indication of phonetic detail, remaining true to the standard orthographic conventions for the utterances wherever this is possible. Lower case is used throughout, with the exception of proper nouns and first person singular “I”. Apostrophes are used as per standard conventions for written English. A full list of transcription conventions can be found in Appendix A.

In short, the bulk of the features captured in the unadorned orthographic transcriptions (beyond those used in representing lexical items) are features which have been shown to have some interactional significance i.e. pauses (see e.g. Jefferson 1989; Pomerantz 1984a,b), audible breathing (see e.g. Jefferson 1983: 13–14, Jefferson 1986: 162–163, Schegloff 1996: 93), overlap (see e.g. Jefferson 1983, 1986; Schegloff 2000b), and cut-offs (see e.g. Jasperson 1998, 2002; Schegloff 1979b; Schegloff, Jefferson & Sacks 1977).

11Jefferson’s pseudonym (Deena) is changed to another pseudonym (Barbara) so that the pseudonym has the same number of syllables as the original.
Chapter 2. Methodology

Unadorned orthographic transcriptions will be employed when fine-grained phonetic details are not being discussed: the system for presenting more fine-grained phonetic details is outlined in the next section.

Enhanced orthographic transcriptions

Where relevant to the analytic points being made, phonetic details of the talk are presented through a series of vertically aligned lines of transcription. These transcriptions are referred to as ENHANCED ORTHOGRAPHIC TRANSCRIPTIONS.

An enhanced orthographic transcription consists of a transcription of the type shown in Fragment 5, accompanied by transcriptions of analytically relevant phonetic details on other lines. In most cases, these details are aligned with the orthography (though there are limitations to this: in some cases the temporal extent of some given feature may not correspond directly to the characters in the orthography). Not all phonetic details which can be observed are presented in all cases, as some are more relevant to the argument being made than others. Still, a maximal transcription (maximal in terms of what might be presented in this thesis, not maximal in terms of what could be transcribed under this system) would be like that shown in (6), which shows the talk from lines 10 to 11 in Fragment 5.

(6) Holt May 88: Side 2: Call 4: 1

\[(\text{Dee): Skip indeed I’m not calling you Skip you old bugger}\]
\[p------ f------ f---\]
\[all---- l-------------\]
\[\text{((laugh from S.))}\]

The paragraphs which follow offer a line-by-line account of the transcription shown in Fragment 6.

Rather than present an impressionistic pitch trace above the orthography (a common practice in transcribing talk-in-interaction – see e.g. some of
the papers in Couper-Kuhlen & Selting 1996), enhanced orthographic transcriptions may include an F$_0$ trace, plotted in Hertz on a logarithmic scale and relative to the speaker’s baseline, topline, and median pitch (see Section 2.3.2 above). It should be noted that for technical reasons when F$_0$ traces are presented above lines of orthography in this way, the F$_0$ traces are not aligned precisely with the orthography; however, the F$_0$ traces only show the utterance which they are placed over, so typically the alignment is close. For instance, the fall in pitch above “not” in the orthography does indeed occur on “not”.

Immediately beneath the orthographic transcription is an impressionistic transcription of local changes in loudness, transcribed using conventions adapted from musical notation, which also feature in the Extensions to the IPA (ExtIPA; see International Phonetic Association 1999: 186–193) and are used in e.g. French & Local (1983, 1986); Kelly & Local (1989a,b); Local & Kelly (1986). A full list of transcription conventions can be found in Appendix A.

Immediately beneath the transcription of loudness is a line which represents local changes in articulation rate, again employing conventions adapted from musical notation, ExtIPA, and Kelly & Local (1989a). By articulation rate is meant the pace of an utterance, with particular (but not exclusive) reference to the spacing between stressed syllables (cf. the definition of tempo in Auer 1990: 362: “the duration of isochronous intervals, where isochrony is taken to be ‘the spacing between prosodically emphasised (‘stressed’) syllables in speech”; cf. also Bull 1997: 34 on isochrony). Transcription conventions can be found in Appendix A.

It is worth emphasising that loudness and articulation rate are transcribed impressionistically relative to two norms. The first is the norm for that speaker (i.e. whether the talk is loud/quiet, or fast/slow relative to that speaker’s usual manner of production in conversation). The second is the norm for the local context (i.e. whether the talk is loud/quiet, or fast/slow relative to the talk which surrounds it).

12 A more elaborate system for transcribing isochrony is given in Auer et al. (1999: x–xi). As isochrony is not the sole, or even main, focus in this thesis, the system they propose is not adopted due to the difficulties it poses for the readability of transcriptions.

48
Chapter 2. Methodology

Immediately beneath the line representing articulation rate characteristics is a line which is used to capture any details which are not adequately represented by the transcriptions on the other lines (usually in terms of description, rather than transcription, and enclosed in double parentheses). Beneath that line, IPA transcriptions are provided which capture precise articulatory details; these transcriptions accord with the conventions of the International Phonetic Association (International Phonetic Association 1999). Single parentheses indicate portions which are not able to be transcribed for one or more of the following reasons:

1. the recording quality is poor;
2. talk is in overlap and the details are not recoverable from the audio recordings;
3. IPA transcriptions would reveal the proper name of a participant, who otherwise has their anonymity preserved by a pseudonym (as in Fragment 6).

It should be noted that not all lines are present in all cases; only those details which appear to have a direct bearing on the analytic point being made are included in the presentation transcriptions.

Evaluation

Having set out the system which will be employed in this thesis, this section offers an evaluation of the proposed system. The system can be evaluated with reference to the catalogue of “desirable features of a system for transcribing talk-in-interaction” set out in Section 2.4.1. The following points are responses to those desirable features, with the numbering of each point corresponding to those features. Transcriptions made with the system proposed in this section

1. are applicable to a range of non-elicited data;
2. are consistent in their level of detail;
3. do not prejudice the relevance of details to the organisation of interaction: for instance, it isn’t restricted to handling particular features (cf.
the ToBI system, for instance, which is designed to handle aspects of pitch; see Beckman & Ayers Elam 1997); rather, the proposed system is indefinitely extendible;

4. are straightforward to read;

5. are suited to their purpose, by means of the two different modes of presentation (i.e. enhanced orthographic transcriptions to facilitate discussion of fine phonetic details; unadorned orthographic transcriptions for other occasions).

One possible criticism of the system which has been proposed in this section is that the transcriptions only make available those aspects of the interaction which the analyst deems relevant to the analysis being proposed, and masks other details which may be relevant. There are two points to be made in response to this. First, the representation and omission of any details from a transcription always requires an element of trust on the part of the reader, irrespective of the transcription system being employed. Furthermore, as transcriptions are necessarily incomplete (i.e. they don’t replace or replicate the original utterance), there is always the possibility that transcriptions will reflect certain of the transcriber’s interests, prejudices, and abilities. Second, it is not at all clear that the kinds of details transcribed under the Jefferson transcription system — if that system is to be considered more complete than that proposed in this section — facilitate reassessment of the analytic claims being made over and above that which can be, and will be, captured under the system proposed here. This is particularly unlikely given that many of the conventions from the Jefferson transcription system (e.g. for indicating silences, overlapping talk, abrupt oral or glottal cut-off, and audible breathing) are also employed in the proposed system.

These concerns regarding the selection of details to be represented notwithstanding, it has been shown that the system described in this section has numerous benefits. Therefore, the proposed system — with its two types of transcription — which will be employed throughout this thesis.
2.5 Summary

In summary, this chapter has set out various aspects of the methodology employed in the exploratory studies reported on in Chapters 3 to 6. Section 2.2 outlined the techniques employed in the analysis of interaction, and gave some coverage to the principles and practices of Conversation Analysis. Section 2.3 discussed the techniques involved in analysing phonetic details of the talk, employing both impressionistic and acoustic phonetic techniques to explore a range of phonetic parameters. Section 2.4 discussed ways of representing talk-in-interaction on paper, and outlined the method which will be employed in the presentation of talk-in-interaction in this thesis. The four chapters which follow each contain an exploratory study of some aspect or practice in talk-in-interaction, employing the methodology described in this chapter.
Chapter 3

Turn endings

3.1 Introduction

This chapter — the first of four analysis chapters (Chapters 3 to 6) — provides an account of certain aspects of turn endings, and particularly of their phonetic design. Providing recognisable end-points of a turn-in-progress is something which a speaker has to do in order that a co-participant (who will most likely be monitoring for such a point) might start up their own talk. Investigating how participants signal completion in their talk, and how co-participants pick up on those signals, allows analysts to tap into participants’ online parsing of talk.

Although the design of turn endings has been a long-standing interest of LCA practitioners (see e.g. Local et al. 1985), certain gaps in understanding are yet to be filled. One of these gaps — which the analysis in this chapter is designed to try to fill — concerns the variability observed around turn endings. Many studies — some of which are described in Section 3.2.1 — describe variability in the phonetic design of turn endings. Some of these studies (though none in the LCA framework, it would seem) make associations between this variability and the action being implemented by the talk; the overly simple claim that questions rise in pitch at their ends, while statements fall in pitch is a case in point.

Comparability — one of the recurrent themes in this thesis as set out in 1.1, alongside variability — also looms particularly large in this chapter. The
data-set for the investigation is constructed in such a way that the place in sequence organisation is controlled for: all of the utterances placed under inspection in this section are first pair parts of adjacency pairs, which are subsequently arranged on the grounds of the action implemented by those first pair parts.

Adjacency pairs are afforded more lengthy discussion and exemplification in Section 3.4.3, though for now they may be regarded as pairs of actions where the first component in the pair (the first pair part) can be understood as making a particular second component (second pair part) relevant e.g. (question-answer, greeting-greeting). There are a number of reasons for studying adjacency pairs, among them the fact that adjacency pairs represent a fundamental “building block” of conversation and its organisation. From a practical point of view, to be complete, adjacency pairs require turn transition, which ensures that in a collection of adjacency pairs, there will be a high return of instances of turn transition (and therefore of turn endings and turn beginnings).

There are also benefits which relate directly to establishing comparability within the data-sets: by restricting examination to the ends of first pair parts (this chapter) and the beginnings of second pair parts (Chapter 4) the place in sequence organisation of the talk begin inspected is controlled for. Currently, little is known about the relationship between sequence organisation and the phonetic design of talk (but see Goldberg 1978), making it necessary to guard against the assumption that sequence organisation is not consequential for the phonetic design of talk. Also, adjacency pairs are used to perform a range of activities and are therefore a rich source of data for comparing the phonetics of different actions. Furthermore, adjacency pairs allow the analyst to focus on actions rather than e.g. grammatical categories: although relatively little is known about how grammatical categories map to actions, there is growing evidence to suggest that the mapping is not simple (see e.g. Wootton 1997, Forthcoming on the relationship between the grammatical format of requests and their functions in interaction; see also Chapter 4 of this thesis; see Schegloff 1984 on questions in talk-in-interaction). Invoking the notion of adjacency pairs ensures that there is action equivalence within the data, rather than equivalence at purely linguistic levels.
Chapter 3. Turn endings

One reason for presenting an account of turn endings at this point in the thesis is that regularly it is the end of one turn which marks the point at which a co-participant may legitimately begin their talk: that is, the ending marks the onset of the transition space. As one aim of this thesis is to provide further insights into participants’ behaviour around the transition space, it makes sense to study its onset first; in any case, turn beginnings are examined in the next chapter.

A further reason for presenting an account of turn endings at this point is that certain concepts involved in this account — and certain findings which arise from it — will inform later chapters (e.g. adjacency pairs, which have particular significance in Chapters 4 and 5; transition relevance is returned to in Chapter 6 which gives an account of one practice for continuing a turn past a point of possible completion, part of which involves avoiding signalling transition relevance).

The structure of this chapter is as follows: Section 3.2 sets out the background and rationale for the study; Section 3.3 outlines the research questions which lead the analysis contained in later sections; Section 3.4 discusses various issues concerning the data-set for that analysis; Section 3.5 provides the bulk of the analysis; Section 3.6 provides a summary of the chapter, and outlines some implications of the findings.

3.2 Background and rationale for the study

This section sets out the background to the study reported on in this chapter. First, a review of previous work on transition relevance is provided (Section 3.2.1); then, some motivations for the study are set out (Section 3.2.2).

3.2.1 Previous work on transition relevance

This section offers a brief overview of work on the signalling of transition relevance, with particular reference to investigations of phonetic design features.
Findings emerging from LCA studies

The phonetic design features of turn-endings has been the focus of a number of LCA studies (see e.g. Ford et al. 1996; Ford & Thompson 1996; Fox 2001; Local et al. 1986; Local et al. 1985; Obeng 1991; Ogden 2001, 2004; Schegloff 1998; Wells & Macfarlane 1998; Wells & Peppé 1996). To give a flavour of these studies, in terms of (i) the analytic techniques employed, and (ii) the findings and claims which emerge from them, two of the studies are examined: Local et al. (1986) and Ford & Thompson (1996). These two studies have been chosen because, as in this thesis, they both deal with talk-in-interaction involving native English speakers (cf. Obeng 1991 on Akan, and Ogden 2001, 2004 on Finnish talk-in-interaction); also, both studies take slightly different analytic approaches.

Local et al. (1986) provide an account based on 126 turn exchanges where talk by one participant is followed by talk by another, in Tyneside English. The data are taken from audio recordings of face-to-face, multi-party interactions. Local et al. identify, inductively from their data, two sets of phonetic features associated with the endings of turns followed by a transition to talk by a co-participant in the clear, i.e. without talk occurring in overlap. Phonetic features involved include a slowing down (routinely over the last two metrical feet of the turn), appreciable duration on the ictus syllable of the last foot, a loudness swell on the ictus syllable of the last foot, a general decrease in loudness across the turn, centralised vowel quality in the last foot, and either (i) pitch step-up at the end of the turn to a point higher than any point reached in the turn-so-far or (ii) a drop in pitch to the bottom of the speaker’s range. One point which is worth emphasising — as it will be returned to later in this chapter — is that while Local et al. (1986) identify both final falls in pitch and final rises in pitch as turn delimitation devices, nothing is made of falls and rises in terms of the interactional constraints on, or consequences of, the deployment of one pitch configuration rather than the other.

Ford & Thompson (1996) provide an account which is based on twenty minutes of American English face-to-face multi-party interactions. They take

1For the sake of brevity, some of the more fine-grained phonetic details have been omitted from this discussion.
as their main focus the interplay of syntax, intonation, and pragmatics in turn transition. Akin to Local et al. (1986), Ford & Thompson recognise the occurrence of both unit-final pitch rises and unit-final pitch falls:

“Among the basic intonation unit types, there are two that are characterized as ending in a contour which signals finality... a marked fall in pitch at the end of the intonation unit ...[and]... a marked high rise in pitch at the end of the intonation unit.”

(Ford & Thompson 1996: 147)

Unlike Local et al. (whose notions of finality are arrived at inductively from what participants treat as complete) Ford & Thompson stipulate what they as analysts will treat as intonational completion; however, their main focus is those cases where speaker change does occur. Ford & Thompson show that overwhelmingly syntactic, pragmatic, and intonational completion converges on those points where speaker change occurs. It should be noted that, as is the case with Local et al. (1986), nothing is made of the distribution of final pitch falls and final pitch rises in their data.

It would seem, therefore, that studies of transition relevance, while observing phonetic variability in the signalling of transition relevance, fail to account for it in any systematic way. It would seem that there are two plausible reasons for this failure. First, the variation observed around turn-endings could be non-systematic i.e. the variation in phonetic design could be in free variation, and neither governed by, nor consequential for, the development of the interaction. Second, the variation could be systematic, but the systematics may have gone unrecorded, or unnoticed, due to the focus of those studies on turn delimitation more generally: that is, in addition to projecting a point of possible completion, the choice of one final pitch configuration over the other might be governed by some other aspect of interaction e.g. the action being implemented by the talk on which it occurs.

Findings emerging from studies of intonation

Having provided a brief review of some of the findings from LCA studies of transition relevance, this section offers a brief review of the tune-based analysis intonation (henceforth TBAI) set out in Armstrong & Ward (1931),
and particularly the claims made linking features of intonation with interactional functions (for slightly modified versions, see e.g. Allen 1954; Jones 1962; Ward 1945; for a concise review of the tune-based approach to intonation, see Laver 1994: 484–493). Before continuing, certain points should be noted. First, the aim is not to provide an exhaustive account of claims made in the TBAI, but rather it is to highlight some of the claims they make which are relevant to the current study. Second, the TBAI has been chosen as it provided a set of rather specific claims concerning the relationship between utterance-final pitch configurations and possible functions in interaction; furthermore, choosing to discuss a single approach to the description of intonation avoids having to compare the finer points of different systems: something which would have only been of marginal relevance to the current analytic task.

The TBAI descriptions differ from the LCA investigations (including the investigation reported on in this chapter) in three important respects: (i) intonation is the sole focus of the descriptions, (ii) the provenance of the data being described is not provided, and (iii) no orientation by participants to the categories postulated was provided. However, a review of this work remains relevant as the utterance-final pitch configurations described are comparable to those described in LCA studies and which are implicated in the signalling of transition relevance (which would seem to permit the inference that at least some aspects of the utterance-final pitch configurations being described by intonationalists have the signalling of transition relevance as one of their key interactive functions). Also, certain links are made between the utterance-final pitch configurations and the function of the talk on which those pitch configurations occur: something which LCA studies have shied away from, but which the analysis in Section 3.5 will confront more directly.

2Of course, given that the provenance of the data is not provided, it is possible that the data is the product of introspection/imagination. In that case, there would be no participants available to display the kind of orientations relied upon in LCA investigations.

3This is assuming that the features described are an accurate reflection of utterance-final pitch configurations in talk-in-interaction. As the provenance of the data is not supplied in the particular studies discussed here, that cannot be guaranteed.
Chapter 3. Turn endings

(a) Statements

(b) Questions containing a special interrogative word

(c) Commands

(d) Invitations

Figure 2: Utterance types produced with Armstrong & Ward’s Tune 1 pitch characteristics

One key aspect of the TBAI is the identification of two primary tunes, labelled TUNE 1 and TUNE 2. In both Tunes, the stressed syllables in the Tune are produced on a descending pitch sequence. In Tune 1 the final stressed syllable has falling pitch, and any following unstressed syllables are produced with low, level pitch. In Tune 2, the final stressed syllable has low pitch: if it is the final syllable, it exhibits a rise in pitch; if it is followed by unstressed syllables, then they are produced on an ascending sequence of notes. These Tunes are then attributed to particular categories of utterances. Figure 2 presents a number of utterances produced with Tune 1 characteristics; Figure 3 presents a number of utterances produced with Tune 2 characteristics. The category labels and examples are taken from Jones (1962: 279–294).

While particulars other than those detailed here are set out in the TBAI, the current discussion focuses on the pitch towards the end of the utterance, and particularly on the pitch characteristics of the final foot of the utterance, as it is these features which have been shown to be most consistently associated with the signalling of transition relevance; see e.g. Local et al. (1986); Wells & Macfarlane (1998); Wells & Peppé (1996).
Chapter 3. Turn endings

(a) First parts of sentences

I’d just bought a new pair of gloves (and was walking out of the shop).

(b) Questions requiring the answer “yes” or “no”

Did it all happen yesterday?

(c) Requests

Do come and see us.

(d) Statements with an implication

It isn’t bad.

Figure 3: Utterance types produced with Armstrong & Ward’s Tune 2 pitch characteristics

It can be seen, therefore, that an association of some kind is being made between the final pitch features and some kind of interactional function of the utterances on which the features occur. This is not uncommon in the literature on intonation (see e.g. O’Connor & Arnold 1961: 32–71; Bolinger 1989: 99–170). The relevance of the TBAI examples in Figures 2 and 3 to the current investigation is that they demonstrate one conception of the relation between features of turn endings and the action being implemented in the talk.5

5Note, however, that Jones’ analysis, and others like it, are problematic for a number of reasons. For instance, the categories themselves are not arrived at inductively from the behaviour of participants involved in collaborative talk-in-interaction. One upshot of this is that some of the categories would appear to be at odds with insights arising from empirical studies of talk-in-interaction. For instance, the category-label “Questions requiring the answer ‘yes’ or ‘no’” would seem to suggest that if a “yes” or “no” does not occur, then it would problematic for the participants: in (L)CA terms it could be regarded as a RELEVANT or NOTICEABLE ABSENCE (see Schegloff 1995a). This is not shown to be the case, as the responses to the questions are not provided. However, it seems easy to imagine situations in which participants could unproblematically not respond with “yes” or “no”. In response to “will you come and dine with us?” (Jones 1962: 295), it seems plausible that a participant
3.2.2 Motivations

As described in the previous section, work within the LCA framework has shown that

1. transition relevance may be marked by certain features of phonetic design;
2. these features are located towards the ends of units of talk (see also Fox 2001);
3. different constellations of phonetics features can signal transition relevance.

These findings provide motivations for certain aspects of the investigation reported on in this chapter (e.g. the inspection of phonetic details, the focusing of attention on the end of the talk in question). However, and given that variability is one of the main themes of this thesis (see Section 1.1), much of what follows in this chapter will revolve around the observation in point 3. Although studies consistently find variability in the phonetic design of utterance endings, there hasn’t yet been a sustained effort within LCA to deal with this variability.

However, work in other frameworks has suggested links between the phonetic variability observed around endings and the function of the talk. For instance: work within the TBAI framework has set out certain associations between final pitch configurations utterance (see the previous section); in a recent laboratory-based study Smith (2002) — working with a set of
French sentences read aloud — found that statements and questions differ in terms of their final voice qualities and the duration of final vowels. Although these studies are limited in certain respects (e.g. the data and categories may not reflect the behaviour of participants in talk-in-interaction in any straightforward fashion; the frameworks provide no method for demonstrating the participants’ orientations to the phonetic variability described) they do seem to provide a warrant for a study of this variability within the LCA framework.

This chapter provides a report on such a study, based on inspection of material from talk-in-interaction in order to investigate (i) the nature of the phonetic variability (if any) at turn endings, (ii) whether this variability can be accounted for by inspecting the action being implemented by the talk, and (iii) whether the participants orient to the variability.

3.3 Research questions

The research questions which guided the investigation are: which features of phonetic design are treated by participants as marking transition relevance? and, if variability is observed in how transition relevance is signalled, can that variability be accounted for by reference to the action being implemented by that talk?

To anticipate the outcome of the investigation: routinely, for the kinds of turns investigated, designed-to-be and treated-as complete turns end with

1. particular pitch characteristics, most notably over the final foot (i.e. the last stressed syllable and anything which follows it);
2. a final open configuration of the vocal tract.

There does not seem to be any evidence — either from the deployment or treatment of these features — that the phonetic variability observed can be accounted for in terms of the action being implemented.

The following sections are concerned with setting out the observable regularities in phonetic form of talk which is oriented to by participants as having been complete. It is worth emphasising that the phonetic features reported on are not all of the features studied — rather, they are the ones which
are systematically deployed on talk which is treated as complete by the participants.

3.4 Data

This section provides an overview of the data-set examined in this chapter. The method employed in constructing the data-set deserves particular attention as it is rather different from other methods of data-collection: rather than collecting all instances of turn transition in the materials (cf. e.g. Local et al. 1986), the data-set is constructed on the basis of sequence organisation (see Section 2.2.2 above) to ensure certain kinds of comparability between instances in the data-set. Furthermore, the method of data collection relies heavily on adjacency pairs: a notion which also informs Chapters 4 and 5.

3.4.1 Data sources

All of the data-sets reported on in Chapters 3 to 6 of this thesis are constructed from corpora of audio recordings of naturally occurring telephone calls (further details of the data corpora can be found in Appendix C). The data-set reported on in this chapter was constructed from a subset of the Holt corpus of telephone calls. In its entirety, the Holt corpus comprises audio recordings of approximately 7.5 hours of telephone calls, all involving one or more members of a single British family (all of whom are native English speakers) over the second half of the 1980s. Most calls involve a member of the family engaged in conversation with a friend or family member, though the corpus also includes a small number of service encounters and calls to work colleagues. The location of the family at the time that the recordings were made is indicated in Figure 4.

The subset of the Holt corpus focused on in this chapter are those calls involving the son of the family (henceforth “Gordon”), who was in his late teenage years at the time the interactions took place. He is involved in fifteen calls in total, which have a total duration of a little under 1 hour. Most of Gordon’s interactions involve friends or family members, with one service encounter (a call involving his hairdresser).
3.4.2 Treated-as-complete utterances

This chapter focuses on talk which can be described as DESIGNED-TO-BE AND TREATED-AS COMPLETE. It is important to note that this does not mean that the analyst alone treats the talk as complete. Rather, at least one of the participants can be seen to be treating that utterance as complete.

One form of evidence that participants have treated talk as complete is the occurrence of unproblematic transition from one speaker to the next at some point in the course of producing an utterance, or soon after its termination. Unproblematic turn transition involves a change from one speaker to the next such that

1. incoming talk is started up in relatively close temporal proximity to the other speaker’s talk which preceded it (see Jefferson 1989 for an insightful account of what may constitute the upper limit of “unproblematic” silences in conversation);\(^6\)

\(^6\)It should be noted that overlapping talk may occur in a way which is entirely lawful and unproblematic for the participants (see e.g. Jefferson 1983, 1986; Schegloff 2000b).
2. there is an absence of features which mark turn-competition, which include noticeable step-ups in pitch and loudness, and recycling of initial elements of the turn (see e.g. French & Local 1983, 1986; Schegloff 1987b; Wells & Macfarlane 1998).

The transitions which occur between the talk labelled A→ and B→ in Fragments 7 and 8 are exemplars of unproblematic turn transition, demonstrating orientation by both speakers to the talk labelled A→ as being complete.

(7) Holt.SO.88.1.1-29s
1 Dav: hello
2 A→ Gor: !pt hi David how's the guitar playing going
3 B→ Dav: oh not too bad at the [moment
4 Gor: ![pt

(8) Holt.SO.88.1.5-17s
1 A→ Gor: d’you want to come up
2 B→ Jan: I’d like to come up yeah b[ut when would be the
3 Gor: [.hh
4 Jan: best time

The second main form of evidence that talk has been treated as complete by the participants is the pursuit of uptake by its producer, regularly after silence. An example of this pursuit of uptake is shown in Fragment 9.

(9) Holt.U.88.1.9-198s
1 A→ Gor: she could have been a little bit more subtle
2 (0.7)
3 Gor: .hhhhh
4 Dan: she [shouldn’t have let] it get out of hand
5 B→ Gor: [d’you think]

In his talk at line 5 (“d’you think”), Gordon can be seen to pursue a response from Dana to his talk at line 1 (“she could have been a little bit more subtle”). In this way, Gordon is treating his own talk at line 1 as complete, and the absence of a response to it from Dana as a relevant absence.

One advantage of constructing a data-set in this participant-driven manner (i.e. by inspecting participants’ treatment of talk) is that it ensures that any features which are systematically deployed on those utterances are features to which participants engaged in talk-in-interaction orient to.

Furthermore, analyst-centred approaches to demarcating units of talk can be problematic. For instance, Koiso et al. (1998) adopt a technique of unit
demarcation involving inter-pausal units (IPUs) in order to perform a quantitative analysis of turn-taking and back-channels in Japanese. Koiso et al. define an IPU as “a stretch of a single speaker’s speech bounded by pauses longer than 100 ms” (Koiso et al. 1998: 299). While this technique is claimed to have the advantage of “objectively and reliably defining the unit” (Koiso et al. 1998: 298), and it certainly is amenable to automatic application to corpora of high quality audio recordings, Koiso et al.’s technique runs the risk of failing to capture participants’ orientations to turn-taking cues. There would seem to be no reason to assume, a priori, that every pause of more than 100 ms (or indeed any such pause) has any systematic relationship with turn-taking. It is not necessary for a pause to occur in order for participants engaged in talk-in-interaction to treat some spate of talk as complete (see e.g. Jefferson 1983, 1986). Likewise, it is not necessarily the case that talk followed by a pause of 100 ms (which itself would appear to be an arbitrary figure) will be oriented to by participants as complete. Furthermore, within the LCA framework it has been shown that the precise articulatory configurations which result in silence can be consequential for the interaction (Kelly & Local 1989b; Local & Kelly 1986) — something which Koiso et al.’s approach presumably fails to take into account.

Analyst-centred approaches can also be problematic in that the criteria analysts apply often seem rather vague, and difficult to apply to talk-in-interaction. For instance, one common way to divide up connected speech above the level of metrical foot or phonological word is in terms of intonation phrases (IPs). While it is not appropriate to provide a detailed critique of intonation phrases, it should be noted that intonationalists acknowledge the difficulties associated with demarcating the boundaries of intonation phrases. Furthermore, these difficulties are said to be exacerbated when attention is turned to talk-in-interaction. For instance, Cruttenden remarks: “[w]hen we consider spontaneous speech (particularly conversation) any clear and obvious division into intonation-groups is not so apparent” (Cruttenden 1997: 29).

7“Intonation phrase” is being used here as a cover-all term for all descriptors of this domain; these include intonation-group, sense-group, breath group, tone-group, tone-unit, phonological phrase, phonological clause (Cruttenden 1997: 29).
In summary, inspecting the behaviour of participants in order to identify unit boundaries (in this particular case, turn boundaries) has important consequences: it ensures that the units identified (and the practices for delimiting them) have a reality for the participants, while side-stepping a number of problems inherent in analyst-centred approaches to delimiting units, and the possibility that analysts’ constructs (such as intonation phrases) are precisely that: analysts’ constructs rather than participants’.

3.4.3 Adjacency pairs

The data-sets studied in this chapter, and in Chapters 4 and 5, are constructed with reference to the notion of the **ADJACENCY PAIR** (APs). Accordingly, APs are described and exemplified in this section.

Drew (2004) provides a useful summary of the main features of APs (other, similar descriptions and discussions can be found in Hutchby & Wooffitt 1998: 39–47 and Levinson 1983: 303–308):

“\text{x}The most basic sequence organization is one which will be familiar to anyone with any acquaintance with CA research: **adjacency pairs** are pairs of actions in which if one speaker does an initial action of a certain type, the other (i.e. recipient) is expected to respond with an action paired with the first action. So if a ‘first’ speaker asks a question, the recipient should answer; if the first speaker greets the other, recipient should return the greeting; if the first speaker invites the other, then the recipient should either accept or decline the invitation (Sacks’ last recorded lectures give an authoritative account of adjacency pairs: Sacks 1992b: 521–575). The expectation that recipient should respond with an appropriate action — the conditional relevance of a second pair part, on the production of a first pair part — is a constraint of sorts, in so far as if the recipient does not construct a next turn as an appropriate response, this “absence” is noticeable (where not anything which is not done in a “next turn” is noticeable)”

(Drew 2004, emphasis in original)
Drew’s description of APs outlines their main criterial features as proposed by Sacks in his lectures of Spring 1972 (Sacks 1992b: 521–575) and which also appear in Schegloff & Sacks (1973: 295–299) (see also Sacks 1987). To state them explicitly, these criterial features of APs can be synthesised as follows:

1. APs are two utterances long.

2. The component utterances of APs are adjacently positioned i.e. they are in an *adjacency relationship*.\(^8\)

3. Alternative speakers produce the component utterances of APs.

4. For some classifiable AP the parts are *relatively ordered* (i.e. one particular component utterance of the AP must precede the other part of the pair).

5. The first component of the AP (the *FIRST PAIR PART*, or FPP) and the second component of the AP (the *SECOND PAIR PART*, or SPP) are *discriminatively related* i.e. on the occurrence of a particular type of first component, only particular types of second component are relevant.

Familiar instances of APs are greeting-greeting, question-answer, and invitation-acceptance/declination pairs.\(^9\) Fragments 10 to 13 exemplify, in order, each of the aforementioned types. In each, \(F \to\) indicates the FPP and

\(^8\)Some discussion of this feature of AP organisation is provided by Schegloff (1988b: 113–114). The discussion is provided in order to clarify certain points which, on Schegloff's admission, have caused some confusion; it is therefore appropriate to summarise some of the main points here. Schegloff makes the claim that the adjacency relationship is something which holds between many turns at talk, and not only between components of APs. One possible conclusion to be drawn from Schegloff’s discussion is that components of APs enter into adjacency relationships with other turns at talk, but that those other turns are not necessarily components of APs. This would seem to suggest that (i) not everything which follows the first component of an AP is a second component of an AP, (ii) not everything which is followed by a second component of an AP is a first component of an AP, and (iii) not everything is a first or second component of an AP. Indeed, this position has been supported by empirical analyses of AP expansions, where turns at talk intervene between FPPs and SPPs (Schegloff 1972, 1988a, 1995b).

\(^9\)Of course there are many others, some of which are exemplified in the course of this thesis.
Chapter 3. Turn endings

$s \rightarrow$ indicates the SPP. The reasons for seeing the talk presented in Fragments 10 to 13 as APs, and particular component utterances as FPPs and SPPs, are set out in the discussion which follows.

(10) MTRAC.60.1-05s

```
1 (telephone rings; the receiver is lifted)
2 Mar: hello
3 F \rightarrow Erm: good morning
4 (.)
5 S \rightarrow Mar: hi
```

(11) NB.IV.1-29s

```
1 F \rightarrow Emm: were you busy last night
2 (.)
3 S \rightarrow Lot: yeah
```

(12) Holt.U88.1.6-17s

```
1 F \rightarrow Gor: d’you want to come up
2 S \rightarrow Jan: I’d like to come up yeah
```

(13) Erhardt.10-23s

```
1 F \rightarrow Kar: you can all come up here
2 (0.3)
3 S \rightarrow Vic: no that’s alright we’ll stay down here
```

Each of the pairs labelled $F \rightarrow$ and $S \rightarrow$ in Fragments 10 to 13 can be described relative to the AP criteria set out above:

1. Each exchange is two utterances long.
2. The utterances are placed adjacently.
3. Different speakers produce each utterance.
4. The second utterance is contingent on the first having occurred — the utterances marked $S \rightarrow$ could not have occurred before the utterance marked $F \rightarrow$ i.e. the second greeting couldn’t have preceded the first in Fragment 10 (see Schegloff 1979a, 1986), the answer couldn’t have preceded the question in Fragment 11, the acceptance couldn’t have preceded the invitation in Fragment 12, and the rejection could not have preceded the invitation in Fragment 13.
5. The second utterance is selected from a group of type-conforming utterances rather than from a group of all possible second utterances. So, in Fragment 10 a greeting is responded to with greeting, and not an answer, an acceptance, or a rejection which occur as second utterances in Fragments 11, 12 and 13 respectively. That an answer, an acceptance, and a rejection occur in Fragments 11, 12 and 13 respectively is a result of the different first utterances in each case.

Because each of the criteria set out for APs is satisfied by the exchanges in Fragments 10 to 13, each of these exchanges can be legitimately viewed as an AP, and their component utterances identified as FPPs and SPPs accordingly. The AP data reported on in this chapter, and Chapters 4 and 5, accord with the criteria for APs set out and exemplified here. Some of the motivations for working with collections of APs in the context of this thesis were set out in Section 3.1.

The account of turn endings provided in this chapter was conducted on the basis of a collection of all of the APs of certain types where Gordon is the FPP-producer, yielding a total of 73 pairs. It is convenient to label these AP-types enquiry, request, assessment, offer, and invitation: each of these types is analysed in some detail later in the chapter. Most, though not all, FPPs that Gordon produces fall inside these categories; the types focused on were chosen simply because of their frequency of occurrence in the corpus.10 The AP-types focused on in Sections 3.5.1 to 3.5.3 are shown in Table 2; definition and exemplification of each type is reserved until Section 3.5.2.

<table>
<thead>
<tr>
<th>AP-type</th>
<th>number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enquiry</td>
<td>42 (58)</td>
</tr>
<tr>
<td>Request</td>
<td>11 (15)</td>
</tr>
<tr>
<td>Assessment</td>
<td>10 (14)</td>
</tr>
<tr>
<td>Offer</td>
<td>6 (8)</td>
</tr>
<tr>
<td>Invitation</td>
<td>4 (5)</td>
</tr>
<tr>
<td>Total</td>
<td>73</td>
</tr>
</tbody>
</table>

Table 2: Distribution of adjacency pair types within the data collected for analysis of FPPs; \(n \ (%) \)

10For instance, there are a small number of greeting FPPs which are not covered here.
3.4.4 Potential limitations of the data

Constructing the data-set for the current investigation in the ways described (i.e. with reference to participants’ orientations, and controlling for the place in sequence organisation at which the talk occurs) has significant benefits.

One potential limitation of the data-set examined in this chapter is that all of the FPPs examined are produced by a single speaker, and as such it is possible that the features which are apparent in his talk are, to some extent, idiosyncratic. However, there are no indications that his conduct in interaction is atypical in any way. Furthermore, the interactions from which the materials are drawn involve a number of other speakers — none of whom seem to have any particular difficulty in interacting with him. It should also be noted that studies which take a single speaker as the main focus of investigations are not uncommon in the literature: see, for instance, Goodwin (1995); Local & Wootton (1995); Simpson (1991, 1992); Wells & Local (1993); Wootton (1997, Forthcoming).

There are also benefits to focusing on the talk of one speaker: for instance, it side-steps possible difficulties with cross-dialectal differences in the phonetic markers of transition relevance (see e.g. Local et al. 1986, 1985; Wells & Macfarlane 1998; Wells & Peppé 1996) as well on intonation systems more generally (see e.g. Grabe, Kochanski & Coleman To appear).

3.5 Analysis

Having described various issues surrounding the construction of a data-set of designed-to-be and treated-as complete utterances in the previous section, this section provides an account of the markers of transition relevance in the talk of a single native English speaker. A particular focus is placed on the variability observed in how transition relevance is marked; the possibility that this variability can be accounted for with reference to the action being implemented by the talk on which those markers of transition relevance occur is also explored.

This section is structured as follows: Section 3.5.1 provides an overview of the features which are systematically oriented to as marking transition rel-
Chapter 3. Turn endings

evance; Section 3.5.2 provides exemplification of those features marking the
transition relevance of a range of FPP types; Section 3.5.3 discusses various
ways in which the variability which is observed might be accounted for; fi-

nally, Section 3.6 provides a summary of the account, and draws out some of
the implications of the findings.

3.5.1 Overview of features oriented to as marking transition
relevance

In the current data-set, and across all FPP-types examined, transition rele-
vance is routinely marked by (i) a final fall in pitch to the lower quartile of
Gordon’s pitch range or a final rise in pitch to just above mid in his range,
and (ii) termination of talk with an OPEN CONFIGURATION OF THE VOCAL
TRACT (OCVT). \(^{11}\) It is convenient to describe the OCVT in terms of glottal
and supra-glottal aspects, as a particular glottal gesture does not entail a
particular supra-glottal gesture, and vice versa. The glottal aspect involves
the termination of talk with the vocal folds fully abducted; the supraglottal
aspect involves the termination of talk without any lingual or labial closures
(i.e. closures made by the tongue or lips, respectively). In this section, the
following additional symbols will be employed to mark these characteristics
where appropriate:

\[
\begin{align*}
\downarrow & \text{ falling pitch terminating in the lower quartile of the speaker’s} \\
& \text{range; placement of the symbol indicates the final stressed} \\
& \text{syllable of the turn} \\
\uparrow & \text{ rising pitch terminating just above mid in the speaker’s} \\
& \text{range; placement of the symbol indicates the final stressed} \\
& \text{syllable of the turn} \\
\mathcal{I} & \text{ turn-final abduction of vocal folds} \\
\mathcal{C} & \text{ absence of turn-final supra-glottal closure, or turn-final} \\
& \text{supra-glottal closure followed by audible release}
\end{align*}
\]

\(^{11}\)There is a small number of FPPs which are treated as complete which do not exhibit
these characteristics: some of these cases are discussed in Section 3.5.3.

71
Where symbols appear enclosed between angled brackets (e.g. \(<P+Q>\)) this indicates the simultaneous occurrence of the features symbolised.

3.5.2 The signalling of transition relevance across first pair part types

This section presents FPPs of various types, each of which exhibits the markers of transition relevance described in the previous section i.e. a final fall in pitch to the lower quartile of the speaker’s range or a final rise to just above mid in the speakers range, and a final OCVT.

For each FPP-type discussed, two exemplars are provided. This is necessary in order to make a particular point which emerges from the data. For each FPP-type examined (enquiry, request, assessment, offer, invitation), there are instances with turn-final falling pitch, and with turn-final rising pitch. It should be noted, however, that the incidence of rises and falls is not equivalent in any of the groups: for each FPP-type, the ratio of final falling pitch to final rising pitch is approximately 4:1 in this data-set.

For brevity, a minimum of background detail is provided for each fragment presented; however, this should not have any bearing on the understanding of the fragments, or the ability to assess the points being made. Although the descriptions which follow may seem overly laborious, they are necessary in order to show that for each FPP-type transition relevance may be marked by final falling and final rising pitch, along with a final OCVT.

Enquiries

The largest group of FPPs in the data-set is composed of ENQUIRIES. Enquiries are FPPs whose main business is the securing of disclosure of some piece of information from a co-participant concerning the organisation of the world, thus making relevant the imparting of that information; many enquiries might be glossed as “questions”.

Enquiries are exemplified by the arrowed turns in Fragments 14 and 15: Fragment 14 concerns David’s son who has recently begun a college course; Fragment 15 concerns arrangement-making for a lift which Gordon has requested from Michael, and which has been granted.
In Fragment 14, the FPP enquiry “is he lodging over there or what” has its nuclear pitch accent on the first syllable of “lodging”. Over the course of this syllable, F₀ rises from 122 Hz to 150 Hz (a rise of 3.6 ST). The following talk is placed low in the speaker’s range, with a slight step-up on “what” which falls from 100 Hz to 90 Hz — a 1.8 ST fall, terminating 3 ST above the speaker’s baseline pitch. In addition to this fall-to-low, an OCVT is also apparent turn-finally: creaky voice is apparent over the final portion of the vowel in “what” (cf. Ogden 2001, 2004 on creak and turn transition in Finnish talk-in-interaction), followed by glottal closure which is released with a short period of whisper phonation. Immediately following this, the co-participant (David) responds to the FPP in ‘UNMARKED NEXT’ POSITION: “a recipient/next speaker [David, in this particular case] produces his talk in such a way that it occurs with neither haste nor delay” (Jefferson 1986: 162).
In Fragment 15, the FPP enquiry “shall I expect you about quarter past eight” is produced in the central part of the speaker’s range, rising slightly over the course of its extent. The nuclear, final pitch accent occurs on “eight”, which exhibits a rise in F_0 from 157 Hz to 203 Hz — a rise of 4.4 ST, terminating 7.4 ST above the middle of his range. A final OCVT is achieved through the release of the alveolar closure at the end of “eight” with no further audible glottal or supraglottal gestures.

Requests

REQUESTS are FPPs whose main business is the asking for some service or favour to be performed by a FPP-recipient, for the benefit of the FPP-producer.

Fragment 16 is taken from a telephone call made by a hairdresser to Gordon on his having failed to keep an appointment he had made with them; as a result, Gordon is trying to rearrange the appointment. Fragment 17 is part of a sequence in which Gordon is requesting a lift into a nearby town from his friend Ken, who has already revealed his intention to go there that afternoon.

(16) Holt.SO.88.1.6-028s; REQ005

1 → Gor: uh: (.) (could/can) I make it next week please

2 (0.2)
3 Hdr: yep
4 (0.3)
5 Hdr: go on
Chapter 3. Turn endings

(17) Holt.SO.88.1.9-042s; REQ001

In Fragment 16 the first part of the utterance is produced above the middle of the speaker’s range. There is then an step-up in pitch for the nuclear, final pitch accent on “week”. The fall in pitch over “week please” measures 12.9 ST, terminating 3.9 ST above his baseline pitch. There is a diminution of airflow apparent over the end of the final voiceless alveolar fricative, with no complete glottal or supraglottal constriction apparent.

In Fragment 17 the first part of the utterance (“can I accom”) is produced relatively high in the speaker’s range; the talk which follows is produced in what might be described as a pitch trough. The end of the turn is marked by a rise of 4.7 ST on the final pitch accent (“chance”), terminating 1.3 ST above the middle of the speaker’s range.

Assessments

ASSESSMENTS are FPPs whose main business is the appraisal of some situation, event, object, person etc., which makes relevant on its completion a reciprocal assessment by the FPP-recipient (see Pomerantz 1984a).

Fragment 18 shows Gordon offering an assessment of the current situation in a television soap opera which Dana has been bringing Gordon up to date on. Fragment 19 sees Gordon and Ken involved in making assessments of a bar/restaurant which they had both visited together on the evening prior to this interaction.
Chapter 3. Turn endings

(18) Holt.U.88.1.9-198s; ASS008

1 → Gor: so it’s all high tension stuff

2 (0.2)
3 Dan: gripping [stuff]
4 Gor: [.hhhhh]

(19) Holt.SO.88.1.9-081s; ASS005b

1 → Gor: good food

2 (0.3)
3 Ken: yes it was I’m glad they haven’t changed anything

The final pitch accent in Fragment 18 (on “stuff”) is marked by a pitch step-up from the prior talk and a fall in F₀ of 8.2 ST, terminating 3.5 ST above the speaker’s baseline pitch. There is also a noticeable diminution in the airflow over the course of the final labiodental fricative, with no audible glottal or supraglottal closure: a final OCVT.

In Fragment 19 a slight step-down in pitch is apparent on the final pitch accent (on “food”), which rises by 4.5 ST and terminates around 1 ST above the mid-point of the speaker’s range. The final alveolar closure is not quite complete (i.e. there is not complete linguo-alveolar closure) with a following period of voiceless turbulent airflow lasting approximately 95 ms, indicative of a final OCVT.

Offers

OFFERS are FPPs whose main business is the proposing of some action to be conducted by the FPP-producer for the benefit of the FPP-recipient.

The talk presented in Fragments 20 and 21 are both taken from the same longer sequence in which Gordon and Dana are making arrangements for
when and where they will meet up the next day. As part of this arrangement making process, in Fragment 20 Gordon offers to meet Dana at the hairdressers. In Fragment 21, which precedes Fragment 20 in the call, as an aside to the main arrangement-making process, Gordon offers to buy Dana a cup of coffee when they meet.

(20) Holt.U.88.1.8-493s; OFF006

1 → Gor: I’ll come and meet you at the hairdresser’s

2 (0.4)

3 Dan: ah no:::

(21) Holt.U.88.1.8-402s; OFF005

1 → Gor: I’ll buy you a cup of coffee in (.) in the café

2 (0.4)

3 Dan: ’cause I’ve got to get my hair cut at nine forty five

In Fragment 20 the final pitch accent (on the first syllable of “hairdresser’s”) is placed just below the middle of the speaker’s range, and his talk terminates 5.6 ST above the speaker’s baseline. Coincident with the offset of the FPP-final fricative (at the end of “hairdresser’s”) is a burst on the audio recording, suggestive of a sudden increase in airflow. One way in which the airflow could have been increased is through an enlarging of the linguo-alveolar aperture by lowering the tongue tip: therefore, this would seem to be a particularly good example of a speaker moving to a final OCVT.

In Fragment 21 the final pitch accent (on the second syllable of “café”) exhibits a rise in F0 of 6.4 ST, terminating 2.6 ST above the middle of the speaker’s range. The utterance terminates with a period of voiceless oral air-
flow (measuring approximately 80 ms), suggestive of widely abducted vocal folds and an absence of supraglottal closure.

Invitations

INVITATIONS are FPPs whose main business is securing the presence of both the FPP-producer and the FPP-recipient at the same location and at the same time.

Fragments 22 and 23 are both taken from the same conversation between friends Gordon and Jane. Jane now lives away from the area but is home for a few days. In each of the Fragments, Gordon offers a version of what can be considered the same invitation (that invitation being for Jane to visit Gordon at his house).

(22) Holt.U.88.1.6-17s; INV002

1 → Gor: d’you want to come up

2 Jan: I’d like to come up yeah but when would be the
3 Gor: [.hh
4 Jan: best time

(23) Holt.U.88.1.6-47s; INV003

1 → Gor: we- we’ve got a video if: if you want to (0.2)

2 → come up

3 Jan: would tonight be the best night

The final pitch accent in Fragment 22 (“up”) is marked by a fall in F_0 which measures 19.6 ST and terminates 5.3 ST above the speaker’s baseline
Chapter 3. Turn endings

pitch. The release of the final bilabial closure is marked by a period of clearly audible voiceless turbulent airflow, measuring approximately 90 ms which indicates a final OCVT.

In Fragment 23 “come up” exhibits a rise in pitch of 8.0 ST, terminating 5.6 ST above the middle of the speaker’s range. The end of the turn is also marked by a period of voiceless turbulent airflow coterminous with bilabial approximation.

Summary and discussion

A series of FPPs has been presented, encompassing five different action-types, all of which were designed-to-be and treated-as complete. These FPPs were shown to routinely involve the following:

1. (a) a final fall in pitch to low in the speaker’s range (mean of all measurable terminal pitches after falls = 3.6 ST above the speaker’s baseline, lowest = 0.1 ST, highest = 6.9 ST), typically to lower than has been reached in the utterance so far, or

 (b) a final rise in pitch from below mid in the speaker’s range to just above mid (mean of all measurable terminal pitches after rises = 4.7 ST above the middle of the speaker’s range, lowest = 2 ST above mid, highest = 8.7 ST above mid);

2. a final OCVT.

Although two rather different final pitch configurations are apparent at the ends of utterances which are treated as complete, there would seem to be no relationship between the final pitch configuration and the action being implemented by the FPP: for each action-type, final falling pitch and final rising pitch are apparent, and neither the size nor the nature of these final pitch movements would seem to be systematically different across the action-types.

It should be noted that surface syntactic features of the FPPs would not seem to assist in accounting for the distribution of final falling pitch and final rising pitch within the data-set. Some of the pairs of examples presented above show strong lexico-syntactic similarities, yet they still exhibit different
pitch characteristics. For instance, the enquiries (Fragments 14 and 15) are both formatted as auxiliary inverted interrogatives (“is he lodging over there or what”; “shall I expect you about quarter past eight”); the requests (Fragments 16 and 17) are both formatted as \([\text{modal}] + [\text{pronoun}] + [\text{remainder of predicate}]\) (“(could/can) I make it next week please”, “could I:: accompany you by any chance”); the offers (Fragments 20 and 21) are both declaratives (“I’ll come and meet you at the hairdresser’s”, “I’ll buy you a cup of coffee in (.) in the café”); the invitations (Fragments 22 and 23) have obvious lexicosyntactic similarities (“d’you want to come up”, “we’ve got a video if: if you want to (0.2) come up”).

Evidence for the role of phonetic features in signalling transition relevance

The previous section established certain features of phonetic design as being associated with transition relevance. Before discussing how the variability observed in those phonetic features (i.e. the occurrence of both rising and falling final pitch movements, and those cases where turns are treated as complete which do not end with final \(<P + C>\)) in Section 3.5.3, this section provides evidence which suggests that the features are indeed implicated in the signalling of transition relevance, and are oriented to as such by the participants (comparable analytic techniques to those invoked in this section are employed in Local et al. 1986; Wells & Macfarlane 1998; Wells & Peppé 1996).

There are two main forms of evidence available in this instance. The first form of evidence is that when the features identified occur in talk-in-interaction, the talk is treated as transition relevant by both participants. This is demonstrated by the turn transitions shown in Fragments 14 to 23 above.\(^{12}\) The second form of evidence is that when these pitch and OCVT

\(^{12}\)It might seem possible that participants wait for others to stop talking in order to begin their talk. Indeed, this has the potential to account for the transitions in Fragments 15, 16, 17, 18, 19, 20, and 21 above), and would also account for why speakers refrain from starting up their talk at other points of syntactic and pragmatic possible completion. However, this account seems to be implausible on the basis of those cases where talk from the FPP-recipient occurs in particularly close temporal proximity to the talk which preceded it (e.g. Fragments 14, 22 and 23 above): given the shortness of the silences following the end of the
features have not occurred, even at points which are otherwise syntactically and pragmatically complete (i.e. at TCU ends), the talk is not treated as transition relevant. Three of the FPPs presented so far — Fragments 15, 16 and 21 will be re-considered in this regard; for convenience, the FPPs are reproduced below. These particular cases have been chosen principally because they exemplify three different kinds of joins (there is a consonant-vowel join, a consonant-consonant join, and a vowel-vowel join), and therefore demonstrate how the signalling of transition relevance is avoided in three different situations. In each, the point of plausible syntactic and pragmatic completion, marked with the symbol “∧” underneath the relevant point in the orthography (a convention adopted from Local et al. 1986); however, neither the FPP-producer, nor its recipient, orient to that point as being one of transition relevance.

(15’) Holt.SO.88.1.2.033s; ENQ015 detail

Gor: shall I expect you about quarter past eight ∧

(16’) Holt.SO.88.1.6.028s; REQ005 detail

Gor: uh: (.) (could/can) I make it next week please ∧

(21’) Holt.SO.88.1.7.402s; OFF005

Gor: I’ll buy you a cup of coffee in (.) in the café ∧

FPPs, it seems unlikely that a co-participant would be able to both recognise the gap and respond to it with talk. Furthermore, other studies have shown that speakers can begin their talk in overlap with the end of the previous speaker’s talk (e.g. Jefferson 1983, 1986; Wells & Macfarlane 1998), suggesting that certain features within the turn itself (i.e. rather than silence following it) projects an upcoming turn-ending.
Chapter 3. Turn endings

In Fragment 15 the alveolar closure which ends the talk leading up to the point of plausible syntactic and pragmatic completion (“shall I expect you about quarter past”) is released, but with a noticeably short period of aspiration (measuring approximately 15 ms), and shorter than other periods of aspiration observed at treated-as-complete FPPs. With regard to the pitch configurations of this talk, although the talk is produced just above mid in the speaker’s range there is no noticeable rise in pitch (rather, the pitch remains level), such as the rise at the end of this FPP, and on others which have been presented (e.g. Fragments 17, 19, 21, 23).

In Fragment 16 there is no release of the velar closure which ends the possibly syntactically and pragmatically complete “(can/could) I make next week”. Rather, following the velar closure, there is a period of simultaneous velar and bilabial closure, followed by release of the bilabial closure into “please”. In this case, although “week” is produced with falling pitch, the fall ends 14.5 ST above the speaker’s baseline. This, along with observations in the preceding paragraph concerning the point of possible syntactic and pragmatic completion following “shall I expect you about quarter past” in Fragment 15, supports the view that if transition relevance is to be marked in part by termination above mid in the speakers’ range, then there must be a rise to mid.

In Fragment 21 continued voicing is apparent between the talk leading up to the point of possible syntactic and pragmatic completion (“I’ll buy you a cup of coffee”) and the talk which follows it (“in (.) in the café”). At the end of the vowel portion which can be attributed to “coffee” (i.e. the point of most close approximation between the tongue and the palate), F₀ is 9.0 ST above the speaker’s baseline: well above the values recorded for treated as complete FPPs with final falling pitch.¹³

It seems clear, therefore, that not only are certain features associated with treated-as-complete utterances: they are also systematically avoided at other points of possible syntactic and pragmatic completion. This issue will be returned to in Chapter 6.

¹³Being more conservative, and measuring F₀ at the onset of the nasal of “in”, yields an F₀ measure of 125 Hz — still some 8.7 ST above the speaker’s baseline.
3.5.3 Accounting for the variability

The preceding sections have identified two main phonetic parameters as implicated in the signalling transition relevance in the data-set. These are (i) certain final pitch configurations, and (ii) certain configurations of the vocal tract. A certain degree of variability is observable with regard to these parameters. For instance, there are two final pitch configurations apparent in the data; also, it is not the case that all FPPs which are treated as complete end with simultaneous $\langle \mathcal{F}+\mathcal{Z} \rangle$. This section provides some discussion of the variability which can be observed in the data-set, and explores the different relationships which might hold between the variability and the interaction.

There are (at least) three kinds of relationship which the variability may enter into with regard to the interaction. First, the deployment of features may be context shaped. That is, features may be deployed with reference to aspects of the interaction which preceded it, and in doing so may be employed to index a particular understanding of what preceded it. The grammatical formats employed in making requests noted by Wootton (1997, Forthcoming) might be described as context shaped, as the format of the requests (i.e. [modal verb]+[pronoun]+[remainder of predicate] vs. imperative) is influenced by the development of the interaction up to that point. Second, the deployment of features may be utterance shaped, whereby the features observed are deployed with reference to features of the target turn itself; a relationship between the syntax of turns and their intonation would provide an exemplar of utterance shaped variability. Third, the deployment of features may be utterance shaping i.e. the design features under consideration may have a bearing on the development of the ensuing interaction. If the variability which can be observed falls into one of these three groups (i.e. it is context shaped, utterance shaped, or utterance shaping), then that variability would seem to be systematic and potentially meaningful (in that it could, for instance, indicate the relationship of the current turn to prior talk and/or have an impact on the subsequent development of the interaction).\(^{14}\)

\(^{14}\)In this investigation, the analytic focus is placed upon the variability observed in the signalling of transition relevance. However, other kinds of variability in design could be inspected for whether it is context shaped, utterance shaped, or utterance shaping.
Accounting for variability in pitch features

In Section 3.5.1 it was shown that FPPs with both final falling pitch and final rising pitch could be treated as complete. Furthermore, it was shown that each of the FPP-types examined (enquiry, request, assessment, offer, invitation) could occur with final rising and final falling pitch. Holding place in sequence organisation and action constant, therefore, would not seem to account for the occurrence of final pitch configurations. The discussion which follows investigates whether this variability is context shaped, utterance shaped, or context shaping.

If this variability (i.e. the occurrence of final falling pitch and final rising pitch) were context shaped, then the occurrence of falls and rises would be predictable on the basis of some aspect of the interaction prior to the FPP. This does not appear to be the case. For instance, FPPs are produced with both final falls and final rises in pitch in rather similar sequential contexts. Consider Fragments 24 and 25:

(24) Holt.SO.88.1.9-033s; REQ001

1 A→ Gor: you’re not (0.4) I don’t suppose going into
2 A→ Yeovil (0.7) u:m: (0.5) !pt (0.7) this afternoon
3
4 B→ Ken: as a matter of fact I (0.7) just said to mum I
5 B→ think I will go into Yeovil this after[noon]
6 Gor: [.hhh]
7 B→ Ken: cos I’ve got nothing better to do

8 C→ Gor: ah (0.2) u:m (0.3) could I:: accompany you by

9 C→ any chance

(25) Holt.SO.88.1.2-018s; REQ004

1 A→ Gor: are you going tonight
2
3 B→ Dav: mm
4 (0.2)
In each case, what can be identified as a PRE-REQUEST (i.e. a preliminary to a request) is produced (labelled A→; various kinds of “pre” are discussed in Schegloff 1995b: 21–41; see also Schegloff 1980, 1988d). In each, the pre-request receives a GO-AHEAD response (B→), making relevant the request to which the talk labelled A→ was a preliminary, these requests occurring at C→. Importantly, and in spite of their sharing place in sequence organisation (not only in being FPPs, but also in both following go-aheads, which themselves both followed pre-requests) and FPP-type (they are both requests), the final pitch configurations are different in each case: the request in Fragment 24 exhibits final rising pitch while the request in Fragment 25 has final falling pitch.

The similarities of the contexts in which Fragments 24 and 25 are principally ones of sequence organisation. One further possibility for the distribution of final falling pitch and final rising pitch being context shaped is that the relevant context to examine operates at another level. For instance, Wichmann (2004) suggests a relationship between certain (final) intonational characteristics of “please-requests”, and the (a)symmetry of power between the speakers involved in the interactions. However, there are FPPs in the current data-set which suggest that invoking this kind of notion of context does not account for the distribution of final pitch configurations. For example, there are instances of the same FPP-type in the same conversation, involving the same speakers, but with different final pitch configurations. To limit investigation to fragments which have been presented up to this point, Fragments 20 and 21, reproduced as (20’) and (21’), show two FPP requests, both of which are produced by Gordon in the same conversation to the same recipient.
It can be seen from the F₀ traces that the final pitch configurations of the enquiries are different: the request in Fragment 20 terminates with falling pitch whereas the request in Fragment 21 terminates with rising pitch.

On the basis of the current data-set, therefore, it would seem that the variability in final pitch configurations apparent across the set of FPPs (i.e. the occurrence of final falling pitch rather than final rising pitch) cannot be considered context shaped.

A second possibility is that the variability in the final pitch configurations is utterance shaped i.e. the final pitch configurations are associated with the internal structure of the turn on which they occur. Indeed, there are reports in the intonation literature which suggest that this as a possibility. For instance, Grabe et al. (To appear) found systematic differences in the average F₀ of statements, wh- and yes/no questions, and declarative questions in a corpus of read speech. It seems plausible, therefore, that the pitch configurations at the ends of the FPPs in the current data-set might be related to the lexico-syntactic properties of the turns of which they are a part. However, as was pointed out in Section 3.5.2, instances in the data-set can show
remarkable lexico-syntactic similarities while also exhibiting different final pitch configurations. So, for instance (restricting commentary to instances already presented): the enquiries in Fragments 14 and 15 are both formatted as auxiliary inverted interrogatives (“is he lodging over there or what”; “shall I expect you about quarter past eight”); the requests (Fragments 16 and 17) are both formatted as [modal]+[pronoun]+[remainder of predicate] (“(could/can) I make it next week please”, “could I:: accompany you by any chance”); the offers (Fragments 20 and 21) are both declaratives (“I’ll come and meet you at the hairdresser’s”, “I’ll buy you a cup of coffee in (.) in the café”); the invitations (Fragments 22 and 23) have obvious lexico-syntactic similarities (“d’you want to come up”, “we’ve got a video if: if you want to (0.2) come up”). However, for each FPP-type presented, one instance has a final falling pitch, while the other has final rising pitch, which suggests that the choice of one final pitch configuration over the other is not utterance shaped.

The third way in which this variability may be significant for the interaction (and thus the interactants) is if the choice of one final pitch configuration over another has a bearing on how the interaction subsequently develops. Making legitimate comparisons in this regard is difficult: an ideal comparison would involve more than one instance, identical in every respect other than final pitch configuration. However, even the current (limited) data-set suggests that the variability in final pitch configurations is not an instance of context-shaping variability. For instance, the enquiries presented in Fragments 14 and 15 are both followed by the imparting of the information that the enquiry was designed to solicit; the assessments in Fragments 18 and 19 are both followed by reciprocal, agreeing assessments.

Inasmuch as the variability in final pitch configurations is not context shaped, utterance shaped, or context shaping, it would seem to be difficult to attribute any particular function to the variability which occurs. This point is afforded further discussion later in this section, following an investigation of the variability in final vocal tract configuration which is observable in the data-set.
Accounting for variability in vocal tract configurations

In addition to certain final pitch configurations, a final open configuration of the vocal tract (OCVT) was recorded as routinely present at the ends of utterances which are treated as complete. OCVT involves an absence of any final glottal or supra-glottal closures (cf. Local et al. 1986 who identify turn-final aspiration of plosives as one aspect of turn delimitation in Tyneside English, and Kelly & Local 1989b; Local & Kelly 1986 who identified holding an articulation as one practice for holding a turn). However, although a final OCVT is present at the end of the majority of FPPs which are treated as complete (i.e. in 82% of the data-set), there are cases in which there is not a final OCVT. Table 3 shows the final vocal tract configurations, arranged by FPP-type. As above, \(\mathcal{I} \) and \(\mathcal{C} \) indicates turn-final abduction of the vocal folds, and absence of turn-final supra-glottal closure respectively; \(\mathcal{?} \) represents turn-final adduction of vocal folds and C represents turn-final supra-glottal closure with no audible release. As with the variability observed in

<table>
<thead>
<tr>
<th>FPP type</th>
<th>(\mathcal{I} + \mathcal{C})</th>
<th>(\mathcal{I} + \mathcal{C})</th>
<th>(\mathcal{?} + \mathcal{C})</th>
<th>(\mathcal{?} + \mathcal{C})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enquiry</td>
<td>36 (85)</td>
<td>4 (10)</td>
<td>2 (5)</td>
<td></td>
</tr>
<tr>
<td>Request</td>
<td>7 (64)</td>
<td>3 (27)</td>
<td>1 (9)</td>
<td></td>
</tr>
<tr>
<td>Assessment</td>
<td>8 (80)</td>
<td>1 (10)</td>
<td>1 (10)</td>
<td>1 (17)</td>
</tr>
<tr>
<td>Offer</td>
<td>5 (83)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invitation</td>
<td>4 (100)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>60 (82)</td>
<td>8 (11)</td>
<td>4 (6)</td>
<td>1 (1)</td>
</tr>
</tbody>
</table>

Table 3: Distribution of final vocal tract configurations within the data; \(n \) (%)

terms of the final pitch configurations, the variability in final vocal tract configuration cannot be accounted for by the action which the FPP is performing. For instance, \(\mathcal{I}+\mathcal{C} \) can occur at the ends of enquiries, assessments, and requests, as can final \(\mathcal{?}+\mathcal{C} \), and \(\mathcal{I}+\mathcal{C} \), as exemplified by the instances presented in Section 3.5.2.

One possibility is that the variability is utterance shaped. That is, the final vocal tract configuration may be the result of the type of sound which occurs at the end of the FPP. For instance, postures for final nasals are regularly held; however, there are also instances of final nasals for which the articulatory gestures are audibly released. Likewise, FPP-final vowels may be fol-
Chapter 3. Turn endings

allowed by labial closure and voiceless nasal airflow, but need not be (see e.g. Fragment 21 above). Similarly, in cases where final [tʰ] might be anticipated (e.g. at the end of “that”, “street”, “it”) glottal closure without audible release may occur, though this is not necessarily the case (see e.g. Fragments 14 and 15 above). It would seem, therefore, that the variability in the final configuration of the vocal tract is not related in any direct fashion to the type of sound which occurs at its end.

Another possibility is that the variability observed in the final configurations of the vocal tract is context shaping: that is, the variability might have a bearing on the development of the interaction past that point. However, this seems unlikely. For instance, FPPs without a final OCVT would seem to be oriented to in precisely the same way as FPPs with a final OCVT. To discuss but one example: Fragment 26 includes a FPP enquiry concerning the latest developments in a television show (“did he beat him up in the street”, line 1).

(26) Holt.U.88.1.9-122s; ENQ040

1 Gor: did he beat him up in the street
2 (.)
3 Dan: oh well (0.6) Clive leapt out of the house (0.2)
4 that was the ding- ginger haired doctor

This enquiry does not end with final <\textit{\text{t}}+\text{C}> but rather with final <\textit{?}+\text{C}>. However, the absence of an audible release of the final glottal closure does not seem to impinge upon Dana’s ability to respond promptly (after only a very short pause) to Gordon’s FPP. This suggests that while FPPs which are treated as complete routinely exhibit a final OCVT, it is not a pre-requisite for such treatment, and would appear to be a less robust marker of transition relevance than the pitch features described in this chapter.

It is possible to speculate as to why this might be. This chapter has been concerned with turn projection: how speakers anticipate the end of a turn while that turn is being produced. It seems plausible that features of phonetic design — such as pitch — which are available for manipulation some time
Chapter 3. Turn endings

before the cessation of talk, would be more use in this regard than features which occur only at the very end of the turn (such as the final configuration of the vocal tract). The notion that articulatory characteristics are supportive of pitch characteristics in signalling transition relevance in this data-set would also explain why some variability in the final configurations of the vocal tract is apparent, while not having any observable effect on the organisation of the interaction; it would also explain why, within their two types (i.e. falling and rising), the pitch configurations are robust and narrowly defined. Of course, this is a speculative remark, and subsequent investigations may be able to explain the variability observed in the final configurations of the vocal tract, and particularly their role in the signalling of transition relevance.

Summary and discussion

This section has reported on an investigation into whether the variability observed in how transition relevance may be signalled — in terms of final pitch configurations and final configurations of the vocal tract — can be regarded as context shaped, utterance shaped, or context shaping. The variability could not be accounted for in any of these ways on the basis of the current data-set. However, aside from the possibility that the variability is not organised in any of these ways, there are a number of factors which may have led to this failure, and which should be acknowledged. First, the key to understanding the variability which is observed may be held by some factor which it is less straightforward to explore by applying the (L)CA methodology (e.g. state of mind, attitude, certain social factors). Second, phonetic variability has been associated with certain factors and functions which have not been explored here: for instance, Hawkins (2003: 389–391) relates certain kinds of phonetic detail and variability to word recognition procedures. Third, it is possible, given the rather small amount of data placed under inspection, that the key to the patterns may be found through the examination of other data-sets.

Given that no over-arching explanation has been offered regarding the function of the variability in the signalling of transition relevance, it is possible to speculate as to its function of the variability which is observed in order to suggest possible avenues for future research. One possibility is that
the variability in final pitch configurations could be indexing the social background and speech community of the speaker. Certainly, studies have shown that different accents of English have different distributions of final falling and final rising pitch. For instance, Local et al. (1986) report that for their Tyneside data 83% of utterances which are followed by in-the-clear turn transition have final rises in pitch. However, final falls are prevalent across this data-set (62/73 cases i.e. 85% of FPP ends studied have a final fall to low in his range), which is almost exactly opposite to the patterns observed by Local et al. (1986). This suggests that the patterns of variability might perform a rather general sociolinguistic role, rather than being accounted for by interactional aspects of the talk.

3.6 Summary and implications

In summary, this chapter has been set out some of the features of phonetic design which are associated with the signalling of transition relevance in a data-set consisting of FPPs, all of which are produced by the same speaker. In that data-set, final pitch configuration and final configuration of the vocal tract have been shown to be associated with the signalling of transition relevance through both their deployment and treatment. It has been shown that in this data-set, transition relevance can be marked in more than one way. For instance, across the data-set FPPs exhibit both final rising pitch (terminating just above the middle of the speaker’s pitch range), and final falling pitch (terminating in the lowest quartile of the speaker’s pitch range). However, in this data-set, no pattern could be found which accounts for this variability; it could not be shown to be context shaped, utterance shaped, or context shaping. One upshot of this finding is that if there is a mapping between activity type and phonetic design of transition relevance, it is a non-simple one. That is, notions such as “question intonation”, whereby questions always have final rising pitch, are not borne out in this data-set. Instead, the phonetic features at the end of the FPPs in this data-set would seem to be directed more generally at the signalling of transition relevance, rather than at the indexing of some particular action being implemented by the FPP. This finding seems plausible: the phonetic designs of turn-endings have been shown to function
as markers of transition relevance, so rather than increase the workload for turn-endings, features which index the action being implemented by the turn may be distributed elsewhere in the turn, and/or at other levels of linguistic organisation (e.g. syntax and lexis).

Notions of comparability — the second recurrent theme in this thesis, alongside variability (see Section 1.1) — have also played a role in the investigation reported on in this chapter. The investigation has demonstrated a sophisticated way of ensuring the legitimacy of comparisons being made. In this investigation, comparability has been established on the basis of (i) place in sequence organisation, and (ii) the action being implemented by the talk in question. Although the variability observed in the phonetic design of the turn endings cannot be accounted for in this investigation, establishing comparability in this way allows it to be said with some certainty that in this data, the variability can not be the result of selecting utterances from different places in sequence organisation, and/or which implement different actions (cf. Local et al. 1986 and Ford & Thompson 1996, where these factors were not controlled for, with the result that their influence remains unknown).

This chapter has begun the investigation of the ways in which participants manage entry to and exit from talk by examining turn endings, and the means by which one particular participant signals transition relevance a particular kinds of utterances. Turn endings mark the onset of the transition space, and the point for which co-participants must monitor in order to begin their talk in an orderly fashion. The next chapter, Chapter 4, examines how co-participants manage this starting up in response to one particular action-type. As in this chapter, both action-type and place in sequence organisation are controlled for.
Chapter 4

Turn beginnings: requests

4.1 Introduction

This thesis is concerned, in large part, with how speakers manage entry to and exit from talk. Having recognised the signalling of transition relevance, co-participants have to react accordingly, part of which involves the design and production of a turn beginning. This chapter examines the various ways in which turns are begun following a particular kind of turn (requests).

This chapter relates to the account of turn endings provided in the previous chapter in that, overwhelmingly, turn beginnings are responsive to a signal of transition relevance. Furthermore, while turn endings mark the beginning of the transition space, turn beginnings mark its end. Therefore, it makes sense to study the design of turn beginnings after studying turn endings. The account provided in this chapter also relates to Chapter 3 in that this chapter trades on certain notions which were introduced and exemplified in Chapter 3 (e.g. adjacency pairs; see especially Section 3.4.3). This chapter also relates to the chapter which follow: Chapter 5 examines some of the ways in which the beginning of an SPP is marked when that SPP is not produced first in the turn; Chapter 6 examines how talk can be designed so that it is simultaneously interpretable as both a beginning and as an end.

In this chapter, comparability is maintained within the data-set in terms of place in sequence organisation (all of the target utterances are SPPs) and action (all of the target turns are responses to requests). As the chapter pro-
gresses, it will become clear that there is a great deal of variability in the design of the request-response beginnings, only some of which can be shown to be consequential for the interaction. Variability, therefore, represents an underlying theme in this chapter.

The structure of this chapter is as follows: Section 4.2 sets out the background and rationale for the study; Section 4.3 sets out the main research questions which drive the analyses presented later; Section 4.4 describes the construction of the data-set which is reported on in Section 4.5; Section 4.6 offers a summary of the chapter and outlines some of its implications.

4.2 Background and rationale for the study

This section provides some background for the exploratory study reported on in this chapter. Section 4.2.1 outlines previous work on turn beginnings from within and outside the LCA approach; Section 4.2.2 sets out some of the motivations for the study.

4.2.1 Previous work on turn beginnings

A small number of studies within the LCA paradigm have focused specifically on the properties of turn beginnings, and have yielded important findings concerning their features of phonetic design. For the purposes of this discussion, these studies — and their findings — can be divided approximately into three categories.

First, studies have shown that turn-beginnings can be TURNCOMPETITIVE (French & Local 1983, 1986; Wells & Macfarlane 1998): that is, they are designed-to-be and treated-as-being in competition with the ongoing speaker for the floor. Features of phonetic design of these incomings include step-ups in pitch, step-ups in loudness, and recycling of talk (see also Schegloff 1987b for a further treatment of aspects of turn-initial recycling).

Second, studies have shown that in certain circumstances the phonetic design of turn-beginnings can be related to the particular action which that talk is implementing. For instance, Couper-Kuhlen (2001a) identifies high in-
tonational onsets as one feature associated with the beginnings of reason-for-the-call turns in telephone interactions.

Third, studies have shown that aspects of the phonetic design of certain turn-beginnings are related to sequential issues. For instance, Local (2004a) has documented the role of turn initial “and-uh(m)” in marking the resumption of talk which has been somehow disrupted, when accompanied by a particular constellation of phonetic features; Couper-Kuhlen (2003) identifies particular phonetic features (high tonational onsets and high pre-heads) as being associated with new topic start-ups (see also Local & Walker 2004).

In short, the LCA paradigm has yielded important findings concerning some of the resources and practices which speakers have available to them for deployment at turn beginnings. Furthermore, relatively little is known about the phonetic characteristics of turn-beginnings beyond those described above.¹

This chapter and the next will each report on exploratory studies of turn beginnings of different types, both conducted within the LCA paradigm. The first of these studies will focus on the design of request-response beginnings; the second (in Chapter 5) will focus on the beginnings of postponed-SPPs.

¹There are also some claims concerning utterance beginnings in the intonation literature which are worth highlighting. For instance, implicit in Figures 2 and 3 of Chapter 3 are claims concerning the pitch features evident in utterance beginnings. These claims are as follows:

1. Where present, the prehead of each intonation phrase (i.e. any syllables occurring before the first stressed syllable in the intonation phrase) occurs just below mid in the speaker’s range.

2. Where present, the head of each intonation phrase (i.e. the syllables between the first stressed syllable in the intonation phrase and the nucleus of the intonation phrase, where the nucleus is the most prominent syllable in the intonation phrase) begins toward the top of the speaker’s range.

It should also be noted that the precise pitch height of the head varies across the utterance types.
4.2.2 Motivations

The previous section provided a brief overview of some findings concerning the phonetic design of turn-beginnings. The studies which yielded those findings are testimony to an active interest in the phonetic design of turn-beginnings.

There are two further motivations for investigating the design of turn-beginnings. First, one of the central aims of this thesis is to provide a more complete understanding of how interacting participants achieve entry to and exit from talk. In order to do this it is essential that the possibility of regularities in the design of turn-beginnings is explored at some point.

Second, even cursory inspection of material from talk-in-interaction show that talk is not started up in the same way at each turn-beginning. As an aspect of variability in the design of talk-in-interaction, some analysis is warranted. Furthermore, inspection of this variability may allow a move towards locating the boundaries of meaningful phonetic variability, where the notion of “meaningful” is grounded in the observable behaviour of the participants.

Motivations for examining responses to a single activity type

Given the consideration of a variety of activity types in Chapter 3, some justification should be offered for only considering the beginnings of responses to one kind of FPP – requests — in this chapter. Since one conclusion arising from the study documented in Chapter 3 was that there is no clear link between the phonetic design of the turn-ending and the activity-type of the FPP, there is therefore no real impetus to examine a wide range of SPP types (in terms of the FPP they are responsive to) as part of the current study.

Furthermore, examining the design of beginnings of responses to one kind of FPP can be used to ensure certain kinds of comparability within the data-set. For instance, all of the data considered in this chapter have some equivalence of (i) sequential location (i.e. they are all SPPs) and (ii) interactional function (i.e. they are all responsive to requests).

One drawback in considering responses to only one kind of FPP is that any findings which arise from the study can only be seen to be applicable to request-response beginnings. However, the methodology employed and
Chapter 4. Turn beginnings: requests

the findings reported in this chapter could be used as the basis for studies of other kinds of turn-beginnings.

Motivations for investigating sequences involving requests

There are a number of motivations for investigating sequences involving requests. First, requests play a key role in social interaction and, by extension, in talk-in-interaction. Second, request sequences are — by and large — straightforwardly identifiable; they also occur with relative frequency in conversation. Third, request sequences regularly involve an adjacency pair consisting of the FPP request and a SPP. That request sequences should regularly consist of an AP has the benefit of yielding a high return of turn transitions; also, the recurrence of grantings and rejections in the SPP will facilitate investigation of whether the request-response has a different design depending on its valence.

One motivation specific to requests arises from previous investigative work on sequences involving requests in conversation (Davidson 1984; Wootton 1997, Forthcoming). Davidson (1984) draws attention to the significance of certain design features of request-response beginnings: for instance, what she refers to as “subsequent versions of invitations, offers, requests, and proposals” may be launched in response to silences immediately following the FPP, which adumbrate rejection.

Motivations for investigating sequences involving request-response beginnings

The preceding sections have set out some of the motivations for looking at a single activity type, and for looking at requests specifically. This section sets out some of the motivations for conducting an investigation into request-response beginnings. To date there has been no general survey of the design features (phonetic or otherwise) of request-response beginnings, or the significances of those different design for the interaction. Rather, request-response beginnings have been mentioned more in passing, as part of other analytic pursuits (e.g. Davidson 1984).
4.3 Research questions

The previous section set out the rationale for the investigation of request-response beginnings; this section sets out some of the research questions which lie behind the investigation. The main research questions are:

1. Is there variability in the design of request-response beginnings?

2. If there is variability in the design of request-response beginnings, then

 (a) what is its nature?

 (b) how can the variability be accounted for?

To pre-empt the outcome of the investigation, in terms of responses to these questions:

1. There is considerable variability in the design of request-response beginnings.

2. (a) This variability includes, but is not limited to (i) lexical choice (ii) temporal placement of talk relative to the request (iii) variable occurrence of inbreaths, “uh(m)”, and “well” early in the response, and (iv) pitch configurations.

 (b) The design of the request-response results from a range of factors, including the format of the request to which it responds, and its preference status. Certain features of their design are shown to be locally occasioned.

In what follows, an account of the variability observed in the design of request-response beginnings in everyday conversation is presented.

4.4 Data

For the previous chapter, a data-set was constructed in which the same speaker produced all of the treated-as complete utterances (see Section 3.4).

The data-set reported on in this chapter was constructed from corpora of audio recordings of telephone calls made in Britain and North America, built
up since the late 1960s, and consisting of approximately 80 request sequences (see Appendix C for details of each corpus from which examples have been included in this thesis).

The main motivation for using a larger number of corpora in this chapter (and in Chapters 5 and 6) is primarily a practical one: by avoiding the restriction of only examining instances which are produced by the same speaker, and by examining more corpora, the construction of a significantly larger data-set becomes possible.

Having set out the background and rationale for the study (Section 4.2), provided some research questions (Section 4.3), and outlined the corpora from which instances of the target phenomena have been drawn (this section), Section 4.5 provides an analysis of a set of requests and their responses.

4.5 Analysis

This section provides an account of requests and request-response beginnings.\(^2\) Section 4.5.1 provides an overview of request types in the data-set, and Sections 4.5.2 and 4.5.3 deal with the two Types of request evident in the data-set.

4.5.1 Overview of request types

The requests in the data-set can be partitioned into two types. **Type I REQUESTS** (35 instances) are the more general type, and include all requests other than requests to speak to the **CALLED** (the caller’s target, as opposed to the **ANSWERER** i.e. whoever picks up the ringing telephone receiver; see Schegloff 1986) for the first time in the conversation. Requests of this latter Type are referred to as **Type II REQUESTS** (26 instances).\(^3\)

\(^2\)By “request-response” is meant the SPP to the FPP request, and not necessarily the talk which immediately follows the FPP, which could be e.g. an insert sequence (see Schegloff 1995b).

\(^3\)It should be noted that certain other kinds of requests have been excluded from the study: namely, requests for repair and/or repeat. Some analysis of these kinds of sequences can be found in Drew (1997); Schegloff (2000c); Schegloff et al. (1977); some phonetic analysis of these requests for repeat can be found in Curl (2002: 178-180).
To provide rapid exemplification before moving on to the analysis proper, Fragment 27 contains a Type I request and its response; Fragment 28 contains a Type II request and its response. In Fragments 27 and 28 the target request is marked \textit{RQ\rightarrow and its response \textit{RP\rightarrow}; this convention will be retained throughout this part of the thesis.

\begin{verbatim}
(27) Holt.1.1.3-54s; REQ007b
1 Les: yes .hh now my daughter should be at home
2 Bat: yes
3 RQ\rightarrow Les: [.hh but uhm (..) if not uh could you put it in
4 RQ\rightarrow the middle barn it’s got uhm .hh sliding doors
5 RP\rightarrow Bat: yes certainly n[o problem at [all
6 Les: [but [I’ll tell her to
7 look out for you
8 Bat: alright fine
\end{verbatim}

\begin{verbatim}
(28) Rahman.B.1.13-4s; REQ060
1 Mic: hello Redcar five four seven nine
2 Jen: em hello Michael it’s Auntie Jenny here is Mummy
3 RQ\rightarrow there
4 RP\rightarrow Mic: yes (..) hold on a minute please
5 (0.2)
6 Mic: mom it’s Auntie Jenny
7 (6.5)
8 Ann: hello there
\end{verbatim}

The data-set is divided into these two Types in order to capture certain regularities observed in the data set. These regularities encompass features of the request-response, as well as of the request itself. That is, different sets of resources are available for Type I requests and their response on the one hand, and for Type II requests on the other.

First, \textit{different formats are employed in making each Type of request}. For instance, Type I requests may be formatted as imperatives (see Fragments 33 and 35; see also Wootton 1997, Forthcoming on imperative requests); there are no instances of Type II requests in the current data-set with an imperative format. The episode represented by Fragment 29 and the request which occurs at line 14 throw into relief certain issues concerning the discriminability and criterial features of the two Types of request.

\begin{verbatim}
(29) Holt.SO88.1.11-171s; REQ036
1 Les: oh say hello to .hhh Granny Anders
2 (0.3)
\end{verbatim}
3 Gor: hello
4 Mum: hello

((28 seconds omitted; talk includes Mum asking Gordon to pass on the address for student accommodation he is about to move to))

5 Mum: no I haven’t got it your mum will give it to me
6 Gor: [yeah
7 (): [(]
8 Gor: okay .hh oh it’s e it’s in the post h[hhh
9 Mum: [()] [yes=
10 (): =[((squeak squeak))
11 Mum: =[okay love
12 Gor: !pt okay
13 (0.9)
14 RQ→ Mum: put Mum on again
15 Les: .hhh uh I’ve sent a letter to you h
16 Mum: have you

The request at line 14 is a request to speak to another, and in this respect like the other Type II (“switchboard”) requests. However it is not, in fact, a Type II request. Rather, it is a Type I request because it is not a request by the caller to speak to the called for the first time in the conversation. That it is a Type I request is underlined by the request having an imperative format (“put Mum on again”). As described above, only Type I requests can take an imperative format in the current data-set.

Second, different formats are employed in the design of request-response beginnings in response to each Type of request. This aspect will provide the main focus of the following sections.

Section 4.5.2 deals with the formats of request-response beginnings following Type I requests; Section 4.5.3 deals with the formats of request-response beginnings following Type II requests. In what follows, a number of different features and formats associated with request-response beginnings are set out, and the formats which are observed are dependent in part upon the Type of request to which they respond. In an attempt to enhance the clarity and accessibility of the following sections, and to provide a reference point throughout the analysis, Figure 5 has been constructed. Figure 5 illustrates, in a schematic and simplified fashion, the main features which are to
Figure 5: Schematic representation of the main features of request-response beginnings
be discussed; it can also be used as a reference point throughout the discussion which follows.

4.5.2 Responses to Type I requests

A range of design features are apparent in the beginnings of responses to Type I requests. Much of this variability can be understood to be bound up with whether the request-response is designed and treated as a straightforward granting/acceptance of the request on the one hand, or a rejection/mitigated acceptance on the other. Accordingly, the request-responses are dealt with below in two groups: granting/acceptance and rejection/mitigated acceptance.

These two classes of response can be considered to represent different preferences: granting/acceptance of a request can be considered a preferred response, while rejection/mitigated acceptance can be considered a dispreferred response. As the notion of preference will run throughout this section (albeit for the most part implicitly), it is worth spending some time outlining some of its main features.

Preference, as manifest in the (L)CA literature, “does not refer to any personal psychological or motivational dispositions of individual speakers” but rather to the “bias towards those next/second actions which promote social solidarity and which avoid conflict” (Drew 1994: 752). For instance, invitations are said to prefer acceptances, irrespective of whether the participant making the invitation wants the invitation to be accepted (see Schegloff 1995b: 61–63). A distinction has been made between two approaches to preference: a sequence based one and a practice based one (Schegloff 1988c). Under the sequence-based approach to preference, preference is a property of sequence types and attention is directed toward the response(s) which an utterance prefers (e.g. invitations prefer acceptances, requests prefer grantings etc); under the practice-based approach, preference is a property of responsive actions and attention is directed towards whether that responsive action is preferred or dispreferred e.g. a granting being done as a preferred response to a request (see also Pomerantz 1984a for an essentially practice-based approach to the preference of responses to assessments; it is also one of the few explicit accounts of preference in talk-in-interaction, though it is re-
stricted in its scope to assessments — a more general survey is provided by Schegloff 1995b: 67–95). In his discussion of the two approaches, Schegloff (1988c) concludes that both notions of preference are useful in the analysis of talk-in-interaction. The account of request-responses which follows tries to make use of both approaches to preference, in that it considers both what next action is preferred by the request, and how the request-response is designed.

At this point it is worth drawing attention to the fact that certain features of responses covered in the sections which follow have been set out on previous occasions (e.g Pomerantz 1984a; Sacks 1987; Schegloff 1995b). The justification for (re-)stating some of these features here is as follows: the task in hand is the building up of an account of request-response beginnings which integrates the inspection of phonetic details and the organisation of the interaction, and it is necessary to make explicit reference to some previously outlined features here, as they form an integral part of request-response beginnings. In any case, the account presented here offers significant new insights, particularly with regard to the positing of two Types of requests and their responses, the identification of the various formats for responding to a request, the exploration of the role of certain phonetic features in the design of request-response beginnings, and the analytic treatment afforded to single episodes in talk-in-interaction.

The sections which follow deal first with the beginnings of request-response which grant/accept Type I requests; this is followed by a consideration of rejection/mitigated acceptance request-response beginnings.

Granting/acceptance

A range of formats for beginning preferred request-responses — i.e. those which implement granting/acceptance — are apparent in the data-set. One feature which these responses all share is that they occur regularly LATCHED to the prior talk or in ‘unmarked next’ position. “Latched” — indicated in transcriptions by an equals sign (=) — means that

“[t]he recipient/next speaker is achieving onset precisely no sooner and no later than the moment at which a possible completion point has occurred.”

(Jefferson 1983: 7)
Chapter 4. Turn beginnings: requests

By “‘unmarked next’ position” is meant the following:

“A recipient/next speaker produces his talk in such a way that it occurs with neither haste nor delay. It is not pushed up into or latched immediately onto the prior utterance, but permits just a bit of space between the end of the prior and the start of the next. It is ‘simply next’. And I have the impression that this is the most common, the usual, the standard relationship of one utterance to a next.” (Jefferson 1986: 162)

Request-responses (to both Type I and Type II requests) occurring in unmarked next position can be seen in Fragments 27 and 28 above at line 5 and line 4 respectively.

The formats for the request-response beginnings where the request-response implements granting/acceptance can be divided into three groups on the basis of the request-response formats. These groups are:

1. [yes]+[more talk];

2. [“right”];

3. other format.

The sections which follow provide description and exemplification of each of these formats in turn. Before proceeding, it should be emphasised that the main focus is on the beginnings of request-responses in question. However, where necessary, reference is made to the material which follows in the same turn-space.

[Yes]+[more talk] This request-response format — where [yes] is followed in the same turn-space by more talk by that speaker — is exemplified by the request-responses in Fragments 30, 31 and 32.
(30) Kamunsky.III-510s; REQ072

((Alan has been giving Maryanne directions to a party))

1 Ala: uh don’t park around the block so you’ll lose
2 your car again
3 Mar: well I’m not parking it uh my parents are taking
4 me
5 (0.4)
6 Mar: hhh that’s the thing I need a ride home
7 RQ→ can somebody give me [a ride home
8 Ala: [Oh,

9 RP→ Ala: yeah there’ll be plenty people here
10 Mar: okay that’s go[od
11 Ala: [okay

(31) Holt.1.1.2-2s; REQ004

1 Les: hello
2 (0.3)
3 Har: hello Mrs Field it’s Leslie Harris here for
4 Castle Kerry’s [(Group)]
5 Les: [O h h e l l o]
6 RQ→ Har: hello Mrs Field .hh uhm !t .h would you be
7 RQ→ available for supply on Thursday=
8 Les: =sorry Thursday
9 Har: [Thursday this week

10 RP→ Les: yes yes=
11 Har: =lovely

(32) Holt.2.2.7-12s; REQ015

1 Les: uhm (.) are you going to sunday services this
2 morning because um .h my husband’s going and he
3 owes you some money for some lo[gs.
4 Cou: [oh hhhuh
5 (0.2)
6 Cou: .hhhhhh oh I’m n- I-uh well how very kind of him
7 tuh remi;ji:[nd
8 Les: [well if not he’ll call in on the way
9 ba[ck
10 Cou: [oh would he thanks .h no I’m just I’ve just
11 got to go out down to Sherple and so I’m n- I’m
12 not going to be uh
13 RQ→ Les: no .hh[well could you could you leave (0.2) uhm
In each of Fragments 30, 31 and 32 a Type I request receives a granting/acceptance, and in each case this granting/acceptance has the format [yes]+[more talk]. In what follows, some discussion is provided of the design features of their beginnings.

It was remarked upon above that granting/acceptances following Type I requests are regularly launched at such a point to allow them to be latched to the prior talk, or to occur in unmarked next position relative to it. In Fragments 30 and 31 the request-response begins in unmarked next position. In Fragment 32 the request-response begins away from a point of syntactic completion, but without any sign of turn-competition by either of the participants. For instance, the request-response beginning is not marked by a step-up in pitch, step-up in loudness, or any recycling of material, which are among the phenomena which can indicate turn-competition (see French & Local 1983, 1986; Wells & Macfarlane 1998). It would seem, therefore, that the request-response can legitimately be viewed as occurring in unmarked next position, despite the syntactic incompletion.

Articulatory variation in these cases is relatively tightly constrained, in part due to the need to preserve the identity of the initial [yes] (i.e. initial palatal approximation with voicing, followed by a vowel which is relatively front and relatively open, possibly followed by voiceless alveolar friction); this issue of variability of the articulatory characteristics of the [yes]-components is returned to in the discussion of Fragment 41.

However, there is striking variability in other aspects of the phonetic design. This variability is particularly noticeable with regard to the pitch configurations of the initial [yes]-components. This variability encompasses (i) pitch range (ii) pitch contour and (iii) pitch height, and is amply demon-
strated by the enhanced orthographic transcriptions of the request-responses in Fragments 30 to 32. In each case shown in Fragments 30 to 32, the initial [yes]-component is stressed. In Fragment 30, the pitch range of the [yes]-component is 5.3 ST, with a falling contour, placed in the middle of the speaker’s range; in Fragment 31, the (first) [yes]-component has a much larger pitch range (18 ST), with a rising-falling contour, reaching the upper limit of the speaker’s range, with a rise of 18 ST and a fall of 2.7 ST; in Fragment 32, the [yes]-component has a pitch range of 5.3 ST (more like that observed in Fragment 30 than that in Fragment 30) with a rising-falling contour (more like that observed in Fragment 31 than that in Fragment 32), reaching the upper limit of the speaker’s range, with a rise of 5.4 ST and a fall of 5.2 ST, terminating just above mid in the speaker’s range (in that respect more like Fragment 30 than Fragment 31).

In spite of these variations in pitch characteristics of the initial [yes]-components, these variations would seem to play no role in terms of consequentiality for the interaction in these cases: in each case, the [yes]+[more talk] request-response is treated as having offered unproblematic granting/acceptance. So, for instance, in Fragments 30 and 31, the [yes]+[more talk] request-responses receive sequence closing third confirmations (“okay that’s good” in Fragment 30 and “lovely” in Fragment 31; see Schegloff 1995b: 119–149 on sequence closing thirds); in Fragment 32 talk progresses from the granting/acceptance by Mr Coulter to further arrangement making. Although the observed variability in the design of the [yes]-components in Fragments 30 to 32 would appear to be inconsequential with regard to the development of the interaction, discussion in a later section will return to the issue of meaningful variability in relation to the production of these components, and will make a start on locating the boundaries of meaningful phonetic variability.

“Right” This request-response format — where a standalone “right” is produced — is exemplified by Fragments 33 and 34.

4 Although the proposed arrangement whereby Leslie’s husband is to put the money through the door is taken up by Leslie as problematic (lines 19 and 20), none of these problems would seem to reflect any problems with Mr Coulter’s “yes of course”.

108
Although there are only four tokens of “right” as a response to Type I requests in the data-set, two relevant observations can be made. First, and unlike the [yes]-components of the [yes]+[more talk] request-responses described above, all of the [“right”] request-responses have falling pitch, placed in the lower part of the speaker’s range. These pitch configurations are exemplified by the F_0 traces shown in Fragments 33 and 34.

Second, the data presented in Fragments 30 to 34 suggests a relationship between the choice of [“yes”]+[more talk] on the one hand and [“right”] on the other. In two out of the four cases where [“right”] is used in response to a
Type II request, the request has the grammatical format of an imperative (as in Fragment 33). On the other hand, there are no cases of [yes]+[more talk] being used as a response to an imperative request.

Other format There are request-response formats which implement a granting/acceptance with a format other than [yes]+[more talk] and “right” as in Fragments 30 to 34. Exemplars of these other formats are provided in Fragments 35 and 36. Regularly — and as in Fragments 35 and 36 — a granting/acceptance request-response format other than [yes]+[more talk] and “right” can be understood to be locally occasioned: that is, the design of the request-response (including its beginning) is responsive to certain specific aspects of the request itself. In being occasioned in this way by the request itself, selecting such a response is one resource participants would seem to available to them with which to demonstrate their understanding of the prior utterance (Schegloff 1992).

(35) Holt.5.88.2.1-78s; REQ026

```
((Mark is talking with Dwayne, having already talked with Dwayne’s daughter (Diena); Diena produces the talk at line 1 from a distance, but it is clearly directed at Mark))

1 Die: [you coming to my w]edding
2 Mar: hhhh
3 (0.6)
4 Dwa: did you hear that
5 Mar: yeah I heard that that’s why I rang up really
6 .h[hh
7 Dwa: [(oh(h)o right)
8 (0.3)
9 Dwa: heh
10 RQ→ Mar: Em (0.3) gnk (0.2) give us the date again
11 RP→ Dwa: July [the (nine/ninth)
12 Mar: [.h h h h h July the ninth
13 Dwa: yeh
```

(36) Holt.1.1.3-17s; REQ007a

```
1 Les: .hh Mister Bathwick (.) uhm I did ask if you
could do me an order on Thursday if I came in and
got it ready
3 (.)
4 Bat: (correct)
5 (.)
6 Les: .hh uh this is Leslie Field h[ere ].hh=
7 Bat: [yes ]yes=
```
Chapter 4. Turn beginnings: requests

In Fragment 35, Mark produces an imperative request – “give us the date again” (line 10) — to which Dwayne responds in unmarked next position with the date of the wedding (“July the nine”, line 11). In not producing a [yes] component, Dwayne is orienting to the grammatical format of the request. As an imperative, the request does not make relevant a [yes] component (cf. the requests in Fragments 30 to 32 which have an interrogative format). Rather, this particular request makes relevant the granting of the request (i.e. the giving of the date) immediately after the request is brought to completion. The relevance of fulfilling the request immediately also explains why Dwayne does not choose “right” as a response: notice that the requests in Fragments 33 and 34 which received “right” as a response were not requests which could be performed immediately. In summary, some account can be given not only for the request-response which does occur in

```plaintext
8 Les: =uhm (. ) but you know I’m a relief teacher I’ve 9 been asked to teach on Thursda[y
10 Bat: [mmhm=
11 Les: =.hh and (. ) I’m coming in tomorrow: or I could 12 pop in quickly on Wednesday I wonder .hhh are you 13 able to do (. ) deliver another day (. ) or 14 w-what do you think 15 (0.4)
16 Bat: it would be very difficult to deliver another 17 day
18 Les: yes
19 Bat: uhm
20 RQ→ Les: .hh well if I could (0.2) is it possible for me 21 RQ→ to leave an order with you=
22 RP→ Bat: =that’s perfectly alright leave the order with us 23 RP→ we’ll make it up and deliver it on Thursday
24 Les: .hh[yes
25 Bat: [if that’s alright with you
26 (.)
27 Les: yes .hh now my daughter should be at home 28 Bat: yes
29 Les: [.hh but uhm (. ) if notb uh could you put it in 30 the middle barn it’s got uhm .hh sliding doors
31 Bat: yes certainly n(o problem at [all
32 Les: [but [I’ll tell her to
33 look out for you
34 Bat: alright fine
35 Les: .hh th[a{nk y o u-
36 Bat: [(
37 Les: [oh uh shall I bring it in
38 tomorrow
```
Fragment 35, but also for some of the designs which do not occur here, but are available for other granting/acceptance responses following a Type I request.

The request-response format in Fragment 36 can also be understood as locally occasioned. Given some of the complexities of this particular request, it is necessary to work through the sequential developments in a step-by-step fashion. Leslie had been planning to pay Mr Bathwick a visit on Thursday, when she would get her order ready and have it delivered (lines 1 to 3). Because her plans have changed, Thursday is no longer suitable for her (lines 8 to 9). Leslie suggests either tomorrow (Tuesday) or Wednesday as alternatives, if Mr Bathwick could deliver on one of those days, presumably after she has made up her order (lines 11 to 14). On having this suggestion rejected (lines 16 to 17), Leslie asks if she could take the order in before Thursday (lines 20 to 21). It is the response to this request which forms the target for the current discussion.

Mr Bathwick’s request-response (“that’s perfectly alright”, line 22) seems to handle the business of granting Leslie’s request in a particularly forceful way, all the more so due to the absence of the [yes]-component. That this granting should be forceful in this way is locally occasioned, in that the request-response handles a particularly delicate piece of interaction. This delicacy is as follows: Leslie has provided three different “plans” for completing her order and having it delivered (labelled here as “plan A”, “plan B”, and “plan C”). Plan A (proposed prior to this interaction) consisted of her going to Mr Bathwick on Thursday, making up the order, and having him deliver it on that day; plan B (proposed at lines 11 to 14) consisted of her going to Mr Bathwick on Tuesday or Wednesday, making up the order, and having it delivered on the day she made up her order; plan C (proposed in her request at lines 20 to 21), goes against the idea of her making the order up and having it delivered on that day; rather, she is to leave the order with Mr Bathwick. Given the reliance of her plans A and B on her completing the order, at the point at which Leslie unveils plan C Mr Bathwick would seem to have

5It is not possible to tell from this telephone call what Leslie is having delivered, or indeed what service Mr Bathwick offers. However, this has no bearing on the ability to understand the sequential development of the interaction.
good reason to think that Leslie feels obliged to make the order up herself. Assuming that is the case, this would warrant the provision of reassurance from Mr Bathwick that plan C is a reasonable one from his point of view; or, as he claims in his request-response, that it is “perfectly alright” (line 22). These lexical choices by Mr Bathwick, and the absence of a [yes]-component from his request-response, would seem to treat Leslie’s request, and her concerns for filling out the order herself, as inapposite. Indeed, Raymond (2000) has shown that preferred responses to yes/no interrogatives (which is how Leslie’s request is formatted) which do not have a [yes]-component (as exemplified by Mr Bathwick’s request-response) treat the FPP as having failed “to take into account some aspect of the context that the FPP speaker could have known or should have known” (Raymond 2000: 303). In this case that context would seem to be that, from Mr Bathwick’s point of view as a service provider, it is reasonable for him to make up Leslie’s order for her; in formatting his request-response in this way, therefore, he works to counteract Leslie’s apparent concern with making up the order herself.\(^6\)

One striking feature of phonetic design of the granting/acceptance request-responses in Fragments 35 and 36 (and others in the data-set) is the incidence of what might be described as pitch matching between the request and the request-response. This pitch matching of the request-response and the request is illustrated by the enhanced orthographic transcriptions shown in (35’) and (36’).\(^7\)

\[(35’)\] Holt.5.88.2.1; REQ026 detail

\(^6\)Raymond (2000) also reports a pattern evident in the request-response in Fragment 36. That pattern is the re-using of elements of a FPP by a SPP-producer when that SPP is a preferred response to a yes/no interrogative, but which lacks a [yes]-component. In this case Leslie’s “leave an order with you” (line 21) is recycled by Mr Bathwick as “leave the order with us” (lines 22 to 23).

\(^7\)The poor sound quality of Fragment 36 prohibits successful\(F_0\) extraction. The enhanced orthographic transcription for this Fragment provides an auditory transcription of the pitch characteristics of relevant sections.
Chapter 4. Turn beginnings: requests

(36') Holt.1.1.3; REQ007a detail

11 RQ → Dwa: July [the (nine/ninth)
12 Mar: [.h h h h h h July the ninth
13 Dwa: yeah

(36') Holt.1.1.3; REQ007a detail

12 RQ₁ → Les: are

13 RQ₁ → you able to do (.) deliver another day (.) or

14 w-what do you think
15 (0.4)

16 REJ → Bat: it would be very difficult to deliver another

17 REJ → day
18 Les: yes
19 Bat: uhm

20 RQ₂ → Les:.hh well if I could (0.2) is it possible for me

21 RQ₂ → to leave an order with you=
In both Fragments 35 and 36, the request-responses (like the request themselves) begin in the upper part of the speaker’s pitch range, lower over the course of the utterance, and finish low in the speaker’s pitch range. Although many turns at talk regularly display this overall fall in pitch across their extent, it seems implausible to view the precise patterns on the request-responses in Fragments 35 and 36 as the result of such a tendency. For instance, (i) not all turns at talk start as high in the speaker’s pitch range as the request-responses in Fragments 35 and 36, and (ii) not all turns at talk terminate so low in the range (see the pitch characteristics shown in Fragments 14, 16, 18, and 20 above, which all finish low in the speaker’s range, but don’t start as high as the request-response in Fragments 35 and 36; also, as demonstrated above, not all treated-as-complete utterances finish low in the speaker’s range).

A further observation can be made regarding pitch matching as a possible resource for marking alignment in request sequences. It is striking that while the straightforward granting/acceptance in line 22 of Fragment 36 is pitch matched with Leslie’s prior talk, Mr Bathwick’s prior rejection (“it would be very difficult to deliver another day”, lines 16 to 17) is not.

Analysis of these fragments invites speculation as to the function of this pitch matching, and (i) its occurrence on certain granting/acceptance request-responses, and (ii) its non-occurrence on rejecting request-responses (see also Couper-Kuhlen 1996 on some of the uses of pitch matching in interaction). Plausibly, one function of this pitch matching is to display an understanding of the relationship between that talk (the request-response) and the prior talk (the request). That is, matching the pitch of the request-response to the request which preceded it may be one resource available to...
the request-response producer with which to display an understanding that the request-response is a preferred response. Likewise, the non-occurrence of pitch-matching on rejecting request-responses may be one resource with which to display an understanding that the request-response is a dispreferred response.

It should be noted that pitch matching is not required in order to display an understanding that the request-response which is underway is a preferred response to the request (i.e. not all cases of granting/acceptance request-responses are pitch matched with respect to the request). Pitch matching is not required to be present in all cases of granting/acceptance request-responses: there is a palette of resources available to participants with which to index and understanding of the request-response as being a preferred or a dispreferred responses to the request. Some of the resources which are available to display a request-response as being a preferred response to a request have been outlined in this section. In the next section a description is provided of some of the resources which which available to display a request-response as being a dispreferred response to a request: namely, responses to Type I requests which implement mitigated acceptance or rejection of the request.

Mitigated acceptance/rejection

The previous section outlined certain design features of request-responses (and particularly their beginnings) which implement accepting/granting (preferred) responses to Type I requests. This section provides an account of some of the design features of request-response beginnings which implement mitigated accepting/rejecting (dispreferred) responses to Type I requests. A variety of features can be observed to occur around mitigated acceptance/rejection request-response beginnings in the data-set. These features include the following, and may occur alone, or as composites:

1. inbreath;

2. silence;

3. standalone [yes];
4. “well”;
5. “uh(m)”;
6. avoidance of explicit (lexical) formulation of acceptance.

Each of these features of request-response beginnings following Type I requests is exemplified — alone and/or in combination with another such feature — by the request-responses in Fragments 37 to 40. The relevant details of each fragment are explicated in the paragraphs which follow.

(37) Holt.588.1.5-397s; REQ025

1. Les: well uh what I rang up about was ehm did you
2. have anybody want a photograph
3. (0.5)
4. Rob: I’ll be honest with you
5. Les: no=
6. Rob: =haven’t asked them
7. Les: Oh that’s alright huh hah hah hah [ah
8. RQ→ Rob: [()] (can I leave
9. RQ→ it another week
10. RP→ Les: .hhh well yes if you don’t think it’s too late
11. RP→ now
12. Rob: oh no [no
13. Les: [no okay then][.hh well when shall I
14. Rob: [()]
15. Les: call and pick them up

(38) Holt.SO.88.1.9-33s; REQ041

1. Gor: you’re not ah I don’t suppose going into Yeovil
2. .hhhh uhm !pt (0.3) this afternoon
3. (0.3)
4. Ken: as a matter of fact I (0.5) just said to Mum I
5. think I will go into Yeovil this
6. after[loun cos I’ve got nothing=
7. Gor: [.h h h h]
8. Ken: =better to do
9. (0.3)
10. Gor: ah (0.2) uhm (0.3) could I accompany you by any
11. RQ→ change
12. RP→ (0.2)
13. RQ→ Gor: would [that be possible]
14. RP→ Ken: [u h m : : :]
15. RQ→ Gor: ah- I’ll get my [(0.3) dad to drop me over if:
16. RP→ Ken: [ooh
17. RP→ (0.3)
18. RP→ Ken: I should think so uh uh no oh eet wouldn’t worry
19. about that cos [I’m going p]ast the door

117
Chapter 4. Turn beginnings: requests

(39) NB:IV:7-140s; REQ076

(Emma, apparently in some distress, is talking to her adult daughter (Barbara) about how her husband (Barbara’s father) has recently left her)

1 RQ→ Emm: =[uh will you call him tonight for me=

2 RP→ Bar: =yeah

3 RQ→ Emm: please=

4 RP→ Bar: =yea[h

5 Emm: [and reverse the charge

6 Bar: oh don’t be silly

(40) NB:IV:7-104s; REQ074

1 Emm: will you help me with this honey I need you

2 (0.2)

3 Emm: .hhhhh uhm (0.3) .hhh if he’s going to come down

4 RQ→ or so will you c- reverse a call to me tomorrow

5 RQ→ morning hhhhhh

6 RP→ (0.3)

7 RP→ Bar: I’ll pay for it

8 Emm: no .hhhh and ask what the hell is wro:::ng I

9 mean this is the this is [D a d]

10 Bar: [wen- he we]nt home

11 Emm: saturday night

12 Emm: yeah

In Fragment 37 the beginning of the request-response involves both an in-breath and a “well” token (“.hhh well yes if you don’t think it’s too late now”, lines 10 to 11). This request-response suggests a relationship between these features (i.e. the initial inbreath and [“well”]) – none of which were observed in the granting/acceptance request-response beginnings above — and mitigated acceptance, in that Leslie provides an account for why her acceptance (signalled by the [“yes”] component) might be mitigated: there is
the possibility that “leaving it another week” will be unnecessary as the opportunity to sell the photographs may have passed. The initial “.h. well” can be seen to occur at the beginning of a request-response which somewhat less than straightforward granting/acceptance: it is, therefore, an instance of mitigated acceptance.

Fragment 38 (an expanded version of Fragment 17) illustrates the occurrence of silence (lines 12 and 17) and “uh(m)” (line 14) as design features of mitigated acceptance request-response beginnings following a Type I request (“could I accompany you by any chance”, line 11). That these features of a request-response beginning are consequential for the interaction can be seen in the treatment of them by Gordon. The silence at line 12 leads to reformulation of the request (“would that be possible”, line 13) which simultaneously (i) closes the gap which has resulted from Ken’s lack of uptake and (ii) provides another opportunity for Ken to respond (see also Davidson 1984). In response to Ken’s “uhm:::” (line 14), Gordon produces talk which locates — and attempts to counteract — an issue which may be prohibiting Ken granting the request (“I’ll get my (0.3) dad to drop me over if:”, line 15), that issue being the requirement placed on Ken of having to collect Gordon if Ken offers to fulfil Gordon’s request. It can also be noted that Gordon’s eventual granting of the request, which itself follows further silence (“I should think so”, line 18) does not include a [yes]-component: this absence would seem to be a further design feature which mitigates Ken’s granting of Gordon’s request (cf. Fragment 36 above, where absence of a [yes]-component was shown to strengthen the terms in which a granting was implemented; this suggests that the import of the absence of [yes]-components in request-responses can only be understood when considered in relation to other design features and sequential context). It has been shown that Gordon orients to Ken’s granting of the request as potentially problematic within the request adjacency pair (most notably via Gordon’s reformulation at line 15). There is also evidence for such an orientation by Gordon in the talk which follows the granting: he goes on to produce talk which describes Ken’s granting of the request to collect Gordon from his house and take him to Yeovil as “very generous” (line 25). Such appreciation markers were absent from the straightforward granting/acceptance Type I request sequences shown in Fragments 30 to 36.
The request-responses in Fragment 39 provide two cases of a standalone [yes]-component being treated as only a mitigated granting/acceptance of the request (cf. the treatment [yes]+[more talk] request-responses in Fragments 30 to 32 as straightforward granting/acceptance). Following Barbara’s first request-response in Fragment 39 (line 2) Emma adds the increment “please” (line 3). Davidson (1984) comments that

“Given that a recipient produces a weak agreement after an invitation or offer, then the inviter or offerer may take this weak agreement as begin possibly rejection-implicative.”

(Davidson 1984: 113)

She then provides a collection of instances — including the case shown at line 2 of Fragment 39 — in which

“an initial version gets in response to it a weak agreement, and thereafter the inviter or offerer produces a subsequent version...[T]he subsequent version provides a next place for a response, presumably an acceptance that will in some way be more emphatic than the initial weak agreement.”

(Davidson 1984: 113–114)

What Davidson (1984) doesn’t comment on is that the response provided at this renewed point of possible completion at the end of “please” (line 3) is further weak agreement in the form of a standalone [yes] (“yeah”, line 4). Again, this “yeah” is treated as problematic by Emma in her next turn (“and reverse the charge”, line 5). In that it moves to nullify a possible problem with Barbara making the call (i.e. the cost) Emma’s inducement orients to Barbara’s ostensible granting/acceptance of the request as having been potentially problematic for her (cf. Gordon’s “I’ll get my (0.3) dad to drop me over if:”; Fragment 38, line 15). Had Barbara’s granting/acceptance been sufficiently strong there would, presumably, have been no need for the inducement from Emma of reversing the charges. Analogous with the eventual granting in Fragment 38 (“I should think so”, line 18), Barbara’s response to Emma’s inducement and second recompletion of the request (“and reverse the charge”, line 5, responded to by Barbara with “oh don’t be silly”,

120
line 6) leaves it to be inferred that she will call but only offers a surface response to Emma’s offer to pay for the call, mitigated by the absence of a [yes]-component.

The standalone [yes] tokens, and their treatment, in Fragment 39 suggest that standalone [yes] as a request-response may benefit further inspection on the basis of a larger collection of instances; . The key motivation for this further inspection relates to the claim that

“preferred responses are likely to be short and to the point, dispreferred ones elaborated” (Schegloff 1995b: 65)

Inasmuch as the request-responses are standalone [yes] tokens, they might be considered “short and to the point”, yet they are treated as mitigated acceptances (and, therefore, as dispreferred responses). On the other hand, the [yes]+[more talk] responses above were shown to be treated as straightforward granting/acceptance (and, therefore, preferred responses). Of course, given the small amounts of standalone [yes] tokens as request-responses available for inspection, it is possible that the tokens inspected here are in fact boundary cases of [yes] as a request-response; still, on the other hand it may turn out that [yes] is routinely treated as a dispreferred request-response. Furthermore, inspection of a larger data-set of [yes] tokens may provide insights into the relationship between their phonetic design on the one hand, and their treatment in interactional terms on the other.

There are three points to register concerning the request in Fragment 40 (“will you c- reverse a call to me tomorrow morning”, lines 4 and 5) and its response (“(0.3) I’ll pay for it”, lines 6 to 7). First, as in the mitigated acceptances in Fragments 38 (line 18) and Fragments 39 (line 6), there is no explicit lexical formulation of a granting/acceptance; rather, the acceptance has to be inferred from the talk which Barbara produces. Second, there is no [yes]-component in the request-response; this absence is particularly salient given that the request is formatted as a yes/no interrogative (as in Fragments 37 to 39). Third, a silence precedes the request-response, as was observed in another case of mitigated acceptance presented in Fragment 38.

The final case to be discussed in this section was presented as part of Fragment 36; the relevant section is reproduced as (36’’):
Chapter 4. Turn beginnings: requests

(36") Holt.1.1.3; REQ007a detail

11 Les: =.hh and (.) I’m coming in tomorrow: or I could
12 RQ→ pop in quickly on wednesday I wonder .hhh are you
13 RQ→ able to do (.) deliver another day (.) or w-what
14 RQ→ do you think.
15 RP→ (0.4)
16 RP→ Bat: it would be very difficult to deliver another
17 RP→ day
18 Les: yes

Again, features of the request-response beginning — most notably the si-
lence, the absence of a [yes]-component — would seem to work to signal the
launch of a rejection by Mr Bathwick.

Extending the analysis

The preceding sections have outlined a range of request-response formats
for responding to Type I requests (set out schematically on the left side of
Figure 5). This discussion has focused on some of the kinds of variability
observable at the beginning of the request-responses, though it has drawn
on other aspects of the organisation and design of the talk.

One concern which might be voiced in response to the account of re quest-
response beginnings provided in those sections is that the more fi ne-grained
aspects of phonetic design of request-response beginnings have not been
dealt with. In response, it should be borne in mind that while articulatory
details may be relevant to the organisation of certain phenomena (see e.g.
Ogden Forthcoming), in others they are not. The request-responses surveyed
as part of the exploratory study being reported here would seem to be of this
latter type whereby, on the whole, fine-grained phonetic features do not seem
to have consequences for the way in which the interaction runs off.

This point can be reinforced by returning to the phonetic details of the
[yes]-components of the request responses in Fragments 30 to 36. The initial
[yes]-components are used to exemplify the point as they lend themselves
particularly well to cross-comparison given that each is an instance of the
same lexical item. An impressionistic transcription of each of these [yes]-
components is provided below (see also the enhanced orthographic tran-
criptions in Fragments 30 to 36 for representations of the rather different pitch configurations on each instance).

\[(30') \ \text{j}j_5:\ff\]

\[(31') \ \text{j}e:es:\]

\[(36') \ \text{j}\text{@ff}\text{s}\text{<}\]

It can be seen, therefore, that the precise fine-grained phonetic details are rather different. These differences include variations in

1. duration;
2. loudness;
3. vowel quality.

Indeed, the only phonetic characteristics which these tokens share would seem to be the sequencing of voiced palatal approximation followed by a vowel which is relatively open and relatively front. However, and as shown above, this variability in fine-grained phonetic details would seem to have no observable consequences for the interaction. In these particular cases, therefore, it would seem that the main business of phonetic details is the preservation of the identity of the \([\text{yes}]\)-component. Of course, it may be that future analyses of the organisation of talk-in-interaction may require re-inspection of certain orders of phonetic detail, and one possible outcome of those investigations is that the variability observed in these cases is indeed ordered by reference to aspects of the interaction.

This claim — that the main business of phonetic details in these cases is the preservation of the identity of the \([\text{yes}]\)-component — should not be taken to mean that this is the only business dealt with by the phonetic details, nor that the phonetic details are never consequential for the interaction. Fragment 41 provides a case in which the fine-grained phonetic design of the request-response beginning is meaningful for the interaction/interactants. It is meaningful in that certain design features of the request-response beginning shape the development of the interaction. The discussion which follows goes some way toward demonstrating the usefulness of the LCA methodology in locating the boundaries of meaningful phonetic variability, and the
relevance of fine-grained phonetic details to the design of request-response beginnings. The request-response of interest is shown in line 6.

(41) Holt.O88.1.11-36s; REQ046

1 Ski: can we confirm (.) we we (just) said saturday or
2 Sunday . hhh
3 Joy: yea[h
4 RQ→ Ski: [uhm (.) would sunday be alright
5 (0.6)

Joy: yes [as far as I know]

Ski: [ih- (uh) ah ih-]
Ski: ih- is that alright for you to come
Joy: yes

Following confirmation by Joyce that Skip’s invitation is for Saturday or Sunday (line 3), Skip requests that they meet up on Sunday: “would sunday be alright” (line 4). Shortly after her request-response begins (line 6), Skip starts up his own talk in overlap (line 7). On conclusion of Joyce’s talk, Skip produces “is that alright for you to come” (line 8), which appears to be a second try at the talk he began in overlap at line 7. In that this enquiry provides Joyce with a second slot for a request-response — in which she can re-confirm the granting/acceptance (which she does; line 9) or amend it to a rejection — Skip’s talk orients to the possibility of Joyce’s acceptance of the request as having been problematic for her in some way.

The design and treatment of Joyce’s request-response beginning throws into relief a number of issues surrounding variability in request-response beginnings. It should first be noted that the timing of Skip’s incoming talk at line 7 locates Joyce’s request-response beginning, and specifically the features which occur before the end of her “yes”, as providing Skip with sufficient grounds on which to treat Joyce’s granting/acceptance of the request as having been problematic for her.

A number of observations can be made regarding the phonetic design of this [yes]-component.

1. Temporal placement: the “yes” follows a silence of more than half a second.
2. Articulatory details: voicing begins while the tongue body is in a relatively open and central position; there is then a audible closing gesture in which the tongue body rises towards the palate, and which lasts approximately 100 ms. Figure 6 presents a labelled speech-pressure waveform and wide-band spectrogram of this token, in comparison with the [yes]-component from the request-response in Fragment 32. It can be seen that near the beginning of the [yes]-component in Figure 6(a) F_2 is rising, which is consistent with the auditory percept of the tongue moving towards a more close position over this period (for clarity, the F_1 and F_2 midpoints are indicated by lines); in Figure 6(b) F_1 and F_2 remain roughly level during the onset of the [yes]-component, suggesting a relatively static configuration.

3. Pitch characteristics: falling-rising pitch, terminating high in the speaker’s range.

4. Loudness characteristics: a diminuendo is apparent roughly coincident with the palatal approximant, with a greater decrease in loudness than might be expected; loudness increases on moving into the following vowel.

Crucially, none of these features of phonetic design are apparent in the request-response beginnings in Fragments 30 to 32 (see especially the transcriptions in 30', 31', and 36'). It would seem, therefore, that in his start-up at line 7 Skip is orienting to one or more of the listed features as adumbrating a problem for Joyce in accepting/granting the request.9

In the course of describing the [yes]-components of [yes]+[more talk] responses to Type I requests, it was proposed that relatively free variation could be observed in the phonetic design of the [yes] components; or, at least, the variability which was observed could not be shown to be meaningful in terms of it being consequential for the development of the interaction. However, the phonetic design of the [yes]-component in Fragment 41, and the

9The individuated treatment of the characteristics in terms of which characteristic(s) adumbrate(s) the problems cannot be warranted on the basis of the current data. Therefore, in the context of this investigation, they will be treated as an inseparable cluster of characteristics.
Chapter 4. Turn beginnings: requests

Figure 6: Labelled speech-pressure waveforms and wide-band spectrograms of two [yes]-components in response to Type I requests
observation that the interaction develops differently following this compo-
nent as compared with others in the data-set (which has a different phonetic
design from others in the data-set), casts new light on what might constitute
meaningful variability in the design of [yes]-components in request-response
beginnings.

Although the observation concerning the phonetic variability on initial
[yes]-components still stands, the [yes]-component in Fragment 41 not only
demonstrates that this variability is constrained: it also assists in the locating
of the boundaries of meaningful variability. In this instance by “meaningful
variability” is meant “variability such that Object X will be treated in Man-
ner Y and not in Manner Z”. Transposed to this particular set of instances,
this could be rendered as “variability such that [yes] following a Type I re-
quest will be treated as unproblematic (as exemplified by Fragments 30 to
32) rather than as problematic (as exemplified by Fragment 41)”. This case
also shows in a fairly transparent way that by looking at the behaviour of the
participants analysts can begin to get a handle on what constitutes — for the
interactants — meaningful variability.

In summary, analysis of this [yes]-component in Fragment 41, when set
against the backdrop of the previous description of [yes]-components in
request-response beginnings underscores two points. The first is that the
LCA methodology and its emphasis on warranting claims in the beha-
viour of participants is an appropriate and useful one with which to try to lo-
cate the boundaries of meaningful variability. The second is that analytic
ground can be gained through the careful analysis of single stretches of talk-
in-interaction.

4.5.3 Responses to Type II requests

The previous section provided an account of various features observed at the
beginning of responses to Type I requests. This section provides an account
of some of the features observed at the beginning of responses to Type II
requests.

Much of the variability in design can be understood as bound up with
whether the request-response is a granting or a block of the Type II request.
In the sections which follow, an account is provided of features of granting
responses following Type II requests first, followed by an account of the features of a blocking response.

Granting

The format regularly employed for granting a Type II request is [yes]+[more talk]). Typical instances of this request-response format are provided by Fragments 42 and 43.

(42) Holt.U.88.2.04-4s; REQ033

1. Ozz: this is Ozzie Ogden speaking from Castle Cary Red
2. Les: Cross .hh[\((is)\]
3. Les: [oh [hello
4. (0.2)
5. RQ→ Ozz: Skip there please
6. RP→ Les: yes he’s upstairs hang on Ozzie I’ll get him
7. Ozz: thank you

(43) Rahman.C.1.16-3s; REQ055

1. Ivn: hello Redcar five oh six one
2. RQ→ Ida: uh- is mum there
3. RP→ Ivn: yeah hang on
4. Ida: .h thank you

As was recorded for the [yes]+[more talk] responses to a Type I request, there is a range of phonetic “shapes” apparent in these cases. As in the responses to Type I requests, one of the ways in which this phonetic variability manifests itself is in the pitch characteristics of the [yes]-components. In Fragments 42 and 43, for instance, differences in both pitch height and pitch contour can be noted. In Fragment 42 the [yes]-component is produced with rising pitch (a rise of 5.3 ST) with a slight final fall at its end (a fall of 0.7 ST), placed above mid in the speaker’s range; in Fragment 43 the [yes]-component is produced with roughly level pitch, 2.3 ST above the speaker’s baseline pitch.

Again, and as in the [yes]+[more talk] responses to Type I requests, there would appear to be no observable consequences of this variability. In both
Fragment 42 and Fragment 43 the sequences run off in a very similar fashion, despite the differences in the phonetic design of the [yes]-component. Fragments 42 and 43 can be schematised as in (44):\(^\text{10}\)

\[
\text{(44) A: } [\text{request}]
\]
\[
\text{B: [yes]+[more talk]}
\]
\[
\text{A: [appreciation]}
\]

Given that the variability would seem to be neither context shaped, nor context shaping, it would seem to be difficult to attribute meaning to this variability. Certainly, this variability does not seem to have the same level of meaning as the variability observed in Fragment 41 above.

A further kind of variability is observable among the [yes](+[more talk]) data, and that concerns the lexical choice made to instantiate the [yes]-component. The [yes]-components presented so far, in response to both Type I and Type II requests, have all been realised by lexical items which might be rendered in orthography as “yes” or “yeah”. However, there is one case in which a different lexical choice is made. This lexical choice (“certainly”) would seem to be locally occasioned, and as such is used to display a particular understanding and treatment of the Type II request which preceded it. The case in which this choice is made is represented in Fragment 45, line 3. The background is as follows: Leslie is calling her husband at his place of work; however, Leslie’s call is taken, in the first instance, by a secretary.

\[
\text{(45) Holt.1.2.11-2s; REQ010}
\]
\[
1 \text{ RQ→ Les: oh hello Barbara (.) can I speak (.) to Mister}
2 \text{ RQ→ Field please}
3 \text{ RP→ Bar: certainly (.) just a minute Leslie}
4 \text{ Les: thank you}
\]

Following the Type II request (lines 1 to 2), Barbara responds with “certainly”+[more talk] (line 3) rather than “yes”+[more talk] as described above

\(^{10}\)Clearly, there are differences in the precise construction of the talk which follows the [yes]-component. While both convey broad agreement, in Fragment 42 Leslie’s response incorporates information concerning the called (“he’s upstairs”) and a lexically explicit granting of the request (“I’ll get him”), neither of which are apparent in Ivan’s response in Fragment 43. However, these differences in the formatting of the [more talk] would not seem to account for the variability observed in the design of the [yes]-component.
and exemplified by Fragments 42 and 43. However, this choice of “certainly” can be understood as responsive to its local interactional setting, and can still be legitimately seen as a [yes]-component. It is responsive to the local interactional setting in that it is responsive, in part, to Leslie’s reference to her husband with the overly formal “Mister Field”. That this is overly formal, in this particular interactional setting, is evidenced by her use of the secretary’s first name in her first turn (“oh hello Barbara”, line 1).11 It also seems to be legitimate to view this “certainly” as an instantiation of a [yes]-component in that it has the distributional characteristics of other [yes]-components (i.e. it occurs in initial position in a granting response to a Type II request).

In summary, the canonical format for granting responses to Type II requests is [yes](+[more talk]). There is variation in both the phonetic design of the request-response beginning, and in the lexical choice made to instantiate the [yes]-component; this lexical choice has been shown to be responsive to features of the local interactional setting in which the response occurs.

Blocking

The second kind of response to a Type II request observed in the data can be considered blocking responses. There are only three cases of blocking responses following a Type II request in the data, which renders any investigation speculative. However, some description is afforded to them here for the sake of completeness. There are two kinds of blocking response. The first might be described as a \textit{speaking target} blocking response. In these cases, the caller issues a Type II request to the actual target of that request. An instance of this response is provided in Fragment 46.

11Gail Jefferson’s original transcription included certain subjective representations of what might be considered “affect”. While any explication of her descriptions lies beyond the scope of this thesis, they would seem to offer further support for the description of parts of Leslie’s talk as “overly formal”. Her transcription is as follows:

\begin{verbatim}
Les: Oh hello Dianne (.) Can I speak, t’(mock affected))
 Mister Field: please,
Dia: Certainly. ((smile voice)) J’st a minute Leslie,
Les: Thank you?
\end{verbatim}
The second kind of blocking response can be described as an *UNAVAILABLE TARGET* blocking response. In these cases, the response to a Type II request announces the unavailability of the target. Instances of such responses are shown in Fragment 47 and 48.

(47) Rahman.A.1.14-4s; REQ050

<table>
<thead>
<tr>
<th></th>
<th>Mat: hello Redcar five oh six one</th>
<th></th>
<th>Ver: hello Matthew is your mum there love</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>RQ→ Ver:</td>
<td>3</td>
<td>RP→ Mat: uh no she’s gone (up) to town h</td>
</tr>
<tr>
<td>4</td>
<td>Ver: alright</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Although Fragments 47 and 48 represent the only cases of unavailable target blocking responses to a Type II request, certain relevant observations can be made; furthermore, the observations could be used as a starting point for future analyses on the basis of a larger collection of instances.

First, the responses to the Type II requests in Fragments 47 and 48 are produced in close temporal proximity to the request itself: in Fragment 47 the request-response starts up in unmarked next position; in Fragment 48 the request-response begins in overlap with the request itself. For Type I requests, the regular occurrence of a *preferred* request-response in close temporal proximity to the request was recorded.

Second, a lexically explicit rejection is formulated in Fragment 47 (“uh no she’s gone (up) to town”, line 3) — this was noted as one of the features which rejections of Type I requests conspicuously avoided (see especially the rejection in Fragment 36).

Clearly, these observations are very much limited in their scope due to their being grounded in the details of two instances. However, given that (i)
the responses in Fragments 47 and 48 are dispreferred at some level and (ii) the features of their beginnings are different from those features associated with dispreferred responses to Type II requests, they may be used to form a hypothesis for further investigation. That hypothesis would be: the resources for request-response beginnings, and particularly the relationship of those features to the preference of the request-response, are different depending on the Type of request being followed.

Extending the analysis

A point has been made of referring to one subset of responses to Type I requests as [yes]+[more talk], and one subset of responses to Type II requests as [yes]+[more talk]. The motivation for referring to the responses to Type I requests as [yes]+[more talk] was that standalone [yes] responses to Type I requests were shown to be treated as mitigated acceptances whereas [yes]+[more talk] responses were not (see Fragments 30 to 32 for instances of [yes]+[more talk] in response to a Type I request; see Fragment 39 for instances of [yes]). That is, the two structures for responding to Type I requests, i.e. [yes] and [yes]+[more talk], would appear to have different interactional consequences, and therefore deserve different schematic representations.

However, [yes] and [yes]+[more talk] responses would appear to be treated equally by participants when produced as responses to Type II requests. The evidence for this is contained in Fragment 49.

(49) Holt.O88.1.8-2s; REQ048

```
1 Geo:  oh seven double five
2  ((clack))
3 RQ→ Les: .hhhh oghh hello Geo ((clears throat)) is Joyce
4 RQ→ there
   ___________
   ___________
5 RP→ Geo: yeah
6  Les: !pt thankyou
```

In Fragment 49 Geoff produces a [yes]-component (“yeah”, line 5) in response to a Type II request from Leslie (“is Joyce there”, lines 3 to 4). More importantly, Leslie treats Geoff’s response as complete, responding with an
appreciation in precisely the same fashion as recipients of a [yes]+[more talk] response to Type II requests (see e.g. Fragments 42 and 43 above, and the schema in 44). In that both [yes] and [yes]+[more talk] responses to Type II requests may be treated equally by the participants (even if their frequency of occurrence is not equal), it would seem to be necessary to reflect these two possible structures in its representation, hence the use of parentheses around the “+[more talk]” element.

There is a further significance of the request-response in Fragment 49 for the current investigation. It was claimed that participant behaviour in Fragment 41, particularly when set against the backdrop of other responses to Type I requests, could assist in the task of locating the boundaries of meaningful phonetic variability. Fragment 49 yields comparable insights when considered in relation to other [yes]+[more talk] responses to Type II requests.

It can be seen from the enhanced orthographic transcription in Fragment 49 that Geoff’s [yes] response to Leslie’s Type II request exhibits a large fall in pitch, terminating very near the bottom of his pitch range. These pitch characteristics are rather different from those evident in Fragments 47 and 48 and described above. Crucially, they are different from the pitch characteristics on all other tokens in the data-set: although falling pitch is apparent on two other cases in the data-set, those falls are not of the same magnitude as that in Fragment 49. More importantly, Fragment 49 provides the only case in which the [yes]-component of a Type II request is treated as complete. It would seem, therefore, that there is a boundary of meaningful variability which has been crossed by Geoff's production of “yes” in Fragment 49, and that crossing this boundary facilitates treatment as complete in a way which is not possible following other [yes]+[more talk] responses to Type II requests where the [yes]-component alone is not treated as complete (see e.g. Fragment 42 to 45).

In summary, examination of the response to a Type II request, and comparison with other instances in the data-set, has revealed certain properties concerning the constitution of response to Type II requests. It has also drawn

12The fall on the [yes]-component in Fragment 49 measures 16.4 ST; the other cases measure 3.2 ST and 8.6 ST.
attention to how the interactional consequences of a response with the same format (i.e. [yes] and [yes]+[more talk]) are different following Type I requests on the one hand, and Type II requests on the other.

It also allows the reiteration of certain more general points. The first point concerns the importance of inspecting single episodes of interaction for what they can reveal about more general patterns of organisation. The second point concerns the appropriateness of the LCA methodology (and particularly its insistence on warranting analytic claims in the observable behaviour of participants) to locating the boundaries of meaningful variability.

4.6 Summary and implications

In summary, this chapter has provided an account of requests in everyday conversation, and their responses. The main focus has been on the design of request-response beginnings, partly in order to maintain certain kinds of comparability within the data-set, in terms of both action and place in sequence organisation.

To reiterate the responses to the research questions for this exploratory study, set out in Section 4.3:

1. Considerable variability in the design of request-response beginnings has been demonstrated.

2. (a) This variability has been shown to involve (i) lexical choice (ii) temporal placement of talk relative to the request (iii) variable occurrence of inbreaths, “uh(m)”, and “well” early in the response, and (iv) pitch configurations.

(b) Aspects of the design of request-responses have been shown to be the result of a range of factors, including the format of the request to which it responds, and its preference status. In some cases, particular request-response features have been shown to be consequential in terms of the responses it engenders.

Within the study, comparability has been established on the basis of both action and place in sequence organisation (the utterances examined are all
SPP request-responses). One reason for focussing exclusively on adjacency pairs in this chapter and the previous one is that the way in which exit from and entry into talk may be different in adjacency pairs than between other kinds of turns at talk. Indeed, Sacks claims that

“there are systematic means for achieving no gap/no overlap [between utterances], and those systematic means involve the use of adjacency pairs.”

(Sacks 1992b: 527)

While the decision to focus on adjacency pairs in this chapter and the previous one is a reasonable one (see Section 3.4.3) it should be borne in mind that the precise details involved in the transfer of speakership from one participant to another in the cases described may be different from the transfer of speakership where a different relationship holds between the turns involved.

However, while establishing the comparability of data should be taken seriously, (in order to ensure that like is being compared with like), the resulting analysis is rather narrow in its scope, accounting for particular action types in particular places in sequential organisation. Also, although the data-sets constructed for the investigations reported on in this chapter and in the previous one are not particularly small, the subdividing of the data-sets in order to establish comparability can result in rather small sub-sets of instances.

However, the impact of these drawbacks is assuaged by the positive outcomes of the investigations. In this chapter, a more detailed account has been provided of requests and their responses, and particularly of the design of request-response beginnings. In doing this, the investigation plays a role in furthering the understanding of how participants manage entry into talk, and of the interactional consequences of certain design features; this sits alongside the features set out in Chapter 3 which are involved in adumbrating imminent exit from talk. Also, the investigations have relied on participants’ observable orientations in beginning to home in on what participants engaged in talk-in-interaction treat as the boundaries of meaningful variation. Finally, although the scope of the investigations has been limited to adjacency pairs — and particular kinds of adjacency pairs at that — a methodology has been demonstrated which could be employed in the analysis of further kinds of turns and actions.
The first two studies reported on in this thesis have dealt with some of the design features associated with the signalling of transition relevance (Chapter 3), and with some of the design formats available to participants for starting up talk following the issuing of a request (this chapter). Two further studies — presented in Chapters 5 and 6 — outline the linguistic design and interactional function of two practices which are related to the marking of the beginnings and endings of units of talk. Chapter 5 explores how SPPs are begun when that SPP is not the first thing to occur in the turn (cf. the request-responses in this chapter). Chapter 6 presents an account of a practice for continuing a turn past a point of possible turn-completion through the production of talk which, at both phonetic and grammatical levels, functions simultaneously as the end of one TCU and the beginning of another, thus masking both the ending of the first TCU and the beginning of the second.
Chapter 5

Postponed second pair parts

5.1 Introduction

Previous chapters have examined the design features of turn endings and turn beginnings, and in doing so have given some coverage to both ends of the transition space. This permits the study, in this chapter and the next, of practices in the construction and continuation of turns, each of which have particular relevance to notions of beginnings and endings of turns at talk.

In the practice explored in this chapter, one task for participants is how to mark out the talk which follows a FPP as a continuation of the talk prior to the FPP (rather than the SPP which the FPP makes relevant); another task is to mark out the point at which the SPP begins. This chapter relates to the previous chapters in a number of ways: for instance, in Chapter 3 the demarcating of boundaries was shown to be one kind of work done by features of phonetic design – likewise, in this chapter part of the work done by features of phonetic design is the signalling of the boundary between turn components; as in Chapter 4, the design features of utterance beginnings are an issue. Another common feature is that, as in Chapters 3 and 4, comparability is established across the data-set on the basis of sequence organisation.

The account provided here relates to the practice investigated in Chapter 6 in that here there is a sense of disjuncture between the turn components, which manifests itself in part through the phonetic design of the talk; in contrast, the practice outlined in Chapter 6 involves the deployment of phonetic
resources such that a sense of smooth continuation is achieved. However, the practices focused on in both this chapter and the next are related in that they are practices invoked in the building of turns.

The structure of the chapter is as follows: Section 5.2 provides a description and exemplification of the phenomenon; Section 5.3 outlines the motivations for studying postponed-SPPs in the context of the current investigation; Section 5.4 sets out the main questions which will drive the investigation into postponed-SPPs; Section 5.5 provides details of the data corpora used in this study; Section 5.6 provides the bulk of the analysis of postponed-SPPs in terms of their uses in interaction and their phonetic design; Section 5.7 provides a summary of the findings and a discussion of their significances.

5.2 Description and initial exemplification of postponed second pair parts

This section contains an initial exemplification of the phenomenon and a discussion of its key features, followed by a setting out of the criterial features of sequences involving postponed-SPPs.

Fragment 50 offers exemplification of a range of features which are typical of sequences involving postponed-SPPs. Talk prior to this fragment has been concerned with a college course which Nancy is taking as a mature student. As Nancy is a mature student, many of her student cohort are considerably younger than her. The transcription begins part-way through Nancy’s defending of the character of the students against an apparently rather sceptical Emma.

(50) NB.II.2-439s

<table>
<thead>
<tr>
<th></th>
<th>Emm:</th>
<th>I think some of these kids need a good job though</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>too</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>(0.5)</td>
</tr>
<tr>
<td>3</td>
<td>Emm:</td>
<td>get out and do a little work</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>(0.4)</td>
</tr>
<tr>
<td>5</td>
<td>Nan:</td>
<td>well of course all the kids in this particular</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>class you know are either full time students or</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>they work during the day and go to school at</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>night</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>(0.2)</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fragment 50 begins with Emma’s criticising of Nancy’s student colleagues (lines 1 to 4). In response, Nancy defends the other students by pointing out that many of them work as well as study (lines 6 to 15) — they are, therefore, more virtuous (and less work-shy) than might be inferred from Emma’s talk at lines 1 to 4. Emma formulates an upshot of Nancy’s talk with a negatively formatted assessment and FPP — “they’re not real kookie then” (line 17) — which on its completion makes relevant a SPP from Nancy. Rather than offering a relevant SPP immediately on completion of the FPP, Nancy continues her defensive detailing of the students with “several of whom are married” (line 18). It is only after that talk that the SPP is offered: “oh no” (line 20). It is possible, therefore, to describe “several of whom are married” as a POSTPONING-TCU and “oh no” as a POSTPONED-SPP. Throughout this chapter, the relevant FPP will be labelled $F \rightarrow$, the postponing-TCU $P \rightarrow$, and the postponed-SPP $S \rightarrow$.

There are two further points to be noted concerning Fragment 50, both of which are common to all sequences involving postponed-SPPs. First, the production of a postponing-TCU (rather than the SPP which the FPP makes relevant) is not the result of mishearing the FPP, or of failing to pay sufficient attention. Rather, the postponing of a SPP is a practice available to participants which is deployed in a calculated fashion. There are two features of these sequences which support this view: (i) the TCU which does the postponing typically occurs in the clear (i.e. not in overlap with the FPP), suggesting sufficiently close monitoring by the FPP-recipient to correctly project its
end; (ii) the SPP is issued (following the postponing-TCU) without a request for repeat.

The second feature to note concerning Fragment 50, and which is common to all cases of sequences involving postponed-SPPs, is that the object postponing the SPP is a TCU. A useful distinction might be made here between postponed-SPPs on the one hand, and delayed-SPPs on the other.

SPPs may be seen to be delayed by things other than TCUs. For instance, silences, inbreaths, initial “well”s and “uh(m)”s were all recorded as delaying devices in the request-response investigated in Chapter 4. Given the rather different characteristics of objects which do delaying on the one hand and objects which do postponing on the other, it seems plausible that participants mobilise delaying and postponing for quite different purposes. Indeed, the sections which follow set out the uses of postponed-SPPs in interaction, none of which concur with the functions of delaying as described in the literature.

A number of the observations which have been made concerning features of sequences involving postponed-SPPs can be synthesised as follows:

1. A FPP is brought to completion.

2. The co-participant who it is expected will produce the SPP produces talk which is

 (a) not the SPP;

 (b) not initiating an insert sequence (i.e. not a post-first, or pre-second, insert expansion; see Schegloff 1995b: 98–110 for discussion and exemplification of insert sequences);

 (c) a complete TCU.

3. A move is then made to produce the SPP made relevant by the FPP.

Having provided an initial exemplification and characterisation of the phenomenon in this section, the following section sets out some of the motivations for investigating these sequences in the context of the current investigation.
Chapter 5. Postponed second pair parts

5.3 Background and rationale for the study

One central theme which runs throughout this thesis is that of participants’ online parsing of units of talk; that is, it is concerned with shedding light on some of the practices by which beginnings and endings are signalled in talk, and how their recognition is displayed. Examining sequences involving postponed-SPPs contributes to this endeavour as follows: they have the potential to reveal more about how (and, in fact, whether) speakers mark relationships between units of their own talk as part of this particular practice. It is presumed that these markings (if present) would be drawn on by co-participants in their parsing of the talk. However, it seems justified by an inability to provide a compelling response to the following conundrum: if such markings (assuming, for the moment, that they exist) are not used in the parsing of talk into units, then what would their function be?

5.4 Research questions

Driven by the factors set out in Section 5.3, subsequent sections will be based around the following questions:

1. Are phonetic resources used to distinguish the postponed-SPP from the postponing-TCU, and if so, which phonetic features are implicated?

2. Concerning the function of postponing a SPP, do postponed-SPPs perform recurrent functions in the interaction?

To pre-empt the outcome:

1. Postponed-SPPs are set apart from the postponing-TCUs which they follow. The features which set them apart include the phonetic design and lexical choices made in both the postponing-TCU and the postponed-SPP.
2. Postponed-SPPs are associated with a recurrent function in the interaction. A SPP is postponed in order to ensure some bit of talk (i.e. the postponing-TCU) gets said; regularly this postponing occurs in the face of a FPP which changes the sequential trajectory of the talk such that an appropriate slot in which the postponed-TCU could be placed might not occur.

Section 5.6 provides an account of the practice of postponing a SPP.

5.5 Data

As in Chapter 4, the analysis in this chapter is based on a data-set constructed from the corpora of telephone calls described in Appendix C. A total of eight cases of this phenomenon were found.

5.6 Analysis

This section contains the main analysis of sequences involving postponed-SPPs. First, an account will be provided of some of the uses of postponed-SPPs in interaction; following that, an account will be provided of some of the phonetic design features of postponing-TCUs and postponed-SPPs.

5.6.1 Uses of postponed second pair parts in interaction

Much of this section will be devoted to explicating the details of a number of individual sequences involving postponed-SPPs. Before turning to that explication, it is worth outlining the general function of this practice. Postponed-SPPs provide a practice for counteracting, albeit temporarily, the constraints imposed by the production of a FPP. Perhaps the most salient constraint which a FPP places on its recipient is that which requires either (a) the provision by its recipient of a relevant SPP or (b) the production of talk which moves demonstrably in that direction, e.g. the initiation of an insert sequence (Schegloff 1995b: 98-116). These constraints are counteracted by postponing a SPP in order to ensure that some bit of talk (i.e. the talk contained in the postponing-TCU) gets said: following the production of the
SPP the interaction may develop in such a way that a slot in which that talk could be produced may never emerge. Regularly, the talk in the postponed-TCU follows the sequential track of talk prior to the FPP, in many cases the FPP deviating from that track to some extent.

In the sections which follow, the interactional and phonetic properties of a number of cases are explicated. Examples have been chosen which are representative of the data-set, and indicative of the range of functions to which postponed-SPPs are put.

Fragment 51 follows a noticing by Leslie (the caller) that there is a “strange noise” in Joyce’s house; Fragment 52 forms part of a telling by Nancy to Emma about a man she met at the home of some friends the previous evening.

(51) Holt.O.88.1.8-30s

1 Joy: she was absolutely stupid Geoff put down the
2 phone in the hall and went to pick up the (0.5)
3 you know the cordless phone in the
4 Joy: [bedroom to] bring it in to me
5 Les: [y e s]
6 Joy: .hhhhhh and as soon as he sort of (.) hurries
7 down the (0.5) down the corridor (.) she starts
8 to whi[ne
9 Les: [oh
10 (.)
11 F→ Les: are you (not/lot) in bed are [you
12 P→ Joy: [most peculiar
13 S→ Joy: no no no
14 Joy: I[‘m–
15 Les: [oh no
16 (0.3)
17 Joy: no I’m in the sitting room
18 (0.2)
19 Les: ah .hhh no the thing is um I’m teaching Tuesday

(52) NB.II.4.7-385s

1 Nan: unfortunately he lives in Van Nu:ys
2 (0.2)

2This transcription omits some of the extended periods of audible breathing by Leslie, which occurs over Joyce’s talk. This seems excusable in this case as (i) the inbreaths do not have the interactional function of PRE-TERMINAL “GEARING UP” (Jefferson 1983: 13-4) and (ii) it improves legibility significantly without impinging on the ability to assess the claims being made.
In Fragments 51 and 52 a FPP is issued (at line 11 and line 6 respectively) which marks a deviation from the sequential track being followed by the talk up to that point. In Fragment 51 the FPP marks a move from talk concerning the background noise to being about whether Joyce is in bed; in Fragment 52 the FPP marks a move from talk concerning where the man who Nancy has met lives to being about whether he is “unencumbered”. In Fragments 51 and 52 the talk which follows the FPP operates not on the sequential track which the FPP sets up, but rather on the track established by the talk prior to the FPP: in Fragment 51 an assessment of the dog (who had been responsible for the background noise) is offered following the FPP, and in Fragment 52 a further detail concerning where the man who Nancy has met is based (in terms of where he lives and works) is given. The first case of a postponed-SPP, presented as Fragment 50, showed a similar organisation whereby the sequential track of the talk up to the FPP is followed immediately after it, and prior to producing talk on the sequential track of the FPP (i.e. the SPP).

It was claimed above that one reason for counteracting the constraints of the FPP is that if the opportunity to produce some bit of talk is not taken, then it may not get said at all: that is, the sequential slot in which it could legitimately be produced may not (re-)occur. While the disappearance of some sequential slot is an omni-relevant possibility in talk-in-interaction, it seems to loom particularly large in these cases, as the FPPs represent visible moves away from the trajectory of the talk up to that point, albeit to varying extents. It is this very real possibility of the sequential slot for some bit of talk not (re-)occurring which drives the production of the postponing-TCU.

Fragment 53 contains a further sequence involving a postponed-TCU. In this case the postponing-TCU works on resolving a potential ambiguity in the talk which precedes it. Glen is a driving instructor, and talk up to the
point at which the transcription begins has involved discussion of driving lessons and a driving test which Leslie is arranging for her son:

(53) Holt.SO.88.2.11-186s

1 Les: yes well I think after Christmas would be best
2 then he’s got time to do a bit more practising
3 hasn’t he
4 (.)
5 Les: .hhhhh
6 Gle: uh:::
7 (1.0)
8 F→ Gle: yes now depending on how many lessons you w-
9 F→ you’d li- want [him to have]
10 P→ Les: [for his test] I mean yeah
11 S→ Les: .hhh we’ll (.) um (.) I don’t think he’ll get
12 S→ much more than four in
13 (0.5)
14 Les: .hhhhhh
15 Gle: right well if we could have- (0.2) fi:ve i:n
16 (0.6)
17 Les: yes
18 (.)
19 Gle: uh[:
20 Les: [how much are they may I ask

Talk prior to that presented in Fragment 53 has referred to both the desired timing of Leslie’s son’s driving test, and the timing of the driving lessons, in relation to his university vacation. It is not possible to tell from Leslie’s talk at lines 1 to 3 whether the referent of the talk is the driving test or the driving lessons; when she says “after Christmas would be best” it is unclear whether she is referring to after Christmas being the best time for the driving lessons to start or the driving test to take place. Following Leslie’s talk, Glen offers only weak agreement (lines 4 to 8). Some way into Glen’s talk at lines 8 to 9 Leslie elects to continue her prior talk (which terminated at line 3) with “for his test I mean yeah” (line 10). This continuation from Leslie orients to a possible ambiguity in her prior talk, that ambiguity being whether her son would have more time to practise his driving before his test or before having professional instruction from Glen. Indeed, Leslie may be orienting to Glen’s displayed weak agreement at lines 4 to 8 as indexing a problem of understanding, rather than of alignment. Following the resolution of the

3It would not be considered unusual for a learner driver to drive the family car before having professional instruction.
Chapter 5. Postponed second pair parts

ambiguity, Leslie goes on to respond to Glen’s talk concerning the number of lessons that Leslie would like her son to have.

The point has been made that SPPs are postponed, and postponing-TCUs produced, in order to get some bit of talk out into the open while the opportunity is present. Like Fragments 50 to 52, Fragment 53 offers useful exemplification of this aspect of their function: clearing up an ambiguity is precisely the kind of action which a participant might not get the chance to perform later in any straightforward way. If talk was to progress in such a way that it hangs on mistaken assumptions, repair at that point may prove problematic for the participants. Again, then, it can be seen that the SPP is postponed due to a need to get some bit of talk (the postponing-TCU) said at that moment in the interaction: the postponing of a SPP is a practice available for deployment in an opportunistic fashion in order to seize an opportunity which is provided for by the sequence, and which may not occur again.

Having set out in this section the recurrent interactional features of sequences involving postponed-SPPs, the section which follows presents an analysis of their phonetic properties, particularly with regard to what they can tell us about participants’ online production and parsing of units of talk.

5.6.2 Phonetic design of sequences involving postponed second pair parts

This section provides an account of some of the phonetic design features of sequences involving postponed-SPPs. It focuses on the features apparent at the beginning of the postponing-TCU and the beginning of the postponed-SPP, and the relationships which hold between them, as it would seem to be these features of phonetic design which are consistent in their deployment across the data-set.

To facilitate discussion, enhanced orthographic transcriptions of relevant portions of Fragments 50 to 53 are provided below. For consistency, the fragments are given the same number as the unadorned orthographic transcriptions, with the addition of the prime symbol (′) following the number. The focus of the sections which follow will be the phonetic design features of
those cases, though some analysis of further cases will be provided in due course.

(50′) NB.II.2-439s detail

17 F → Emm: they’re not real kookie then=

18 P → Nan: =several of whom are married
19 (0.2)

20 S → Nan: oh no

(51′) Holt.O.88.1.8-30s detail

11 F → Les: are you (not/lot) in bed are [you

12 P → Joy: [most peculiar
 p------------

13 S → Joy: no no no

(52′) NB.II.4.7-385s detail

6 Nan: !t [.hhhhhh]
7 F → Emm: [is he unencum]bered

8 P → Nan: works out there

9 S → Nan: yes he’s living (.) with his aunt
In the sections which follow, the phonetic design features of this practice are divided, for the purposes of discussion, into features of pitch, loudness, and “other features” which mark the boundary between the components.

Pitch

With regard to the pitch features of the postponing-TCU and the postponed-SPP (and the relationship between them) there are two things to be noted:

1. There is a step-up in pitch on the postponed-SPP from the postponing-TCU.

2. The postponed-SPP has a wider pitch range than the postponing-TCU.

This section will discuss each of these points in turn.

The step-up in pitch from the postponing-TCU to the postponed-SPP is most readily observed on the first stressed syllable of each of the two components. In order to quantify this step-up in pitch the difference, in semitones, was measured between (a) the maximum F_0 of the first stressed syllable in the postponing-TCU and (b) the maximum F_0 of the first stressed syllable in the postponed-SPP.4 For brevity, the results of these measures when applied

4What might be referred to (not unproblematically) as “filled pauses” were excluded from the measures due to the difficulties which arise in deciding their status as stressed or unstressed. Of the cases presented here, only Fragment 53 is affected in any way by this stipulation.
to the instances presented in Fragments 50 to 53 are given in tabular form in Table 4. It can be seen from Table 4, along with re-inspection of the enhanced orthographic transcriptions provided in Fragments 50’ to 53’, that while the maximum F_0 varies across both the postponing-TCUs and the postponed-SPPs (s.d.=62 Hz and 59 Hz respectively), for all cases there is a noticeable step-up in pitch from the first stressed syllable in the postponing-TCU to the first stressed syllable in the postponed-SPP.

<table>
<thead>
<tr>
<th>Fragment</th>
<th>Postponing-TCU</th>
<th>Postponed-SPP</th>
<th>Step-up (ST)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>first maximum</td>
<td>first maximum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>stressed F_0 (Hz)</td>
<td>stressed F_0 (Hz)</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>several 237</td>
<td>oh 397</td>
<td>8.9</td>
</tr>
<tr>
<td>51</td>
<td>most 354</td>
<td>no 382</td>
<td>1.3</td>
</tr>
<tr>
<td>52</td>
<td>works 212</td>
<td>yes 266</td>
<td>3.9</td>
</tr>
<tr>
<td>53</td>
<td>for 272</td>
<td>don’t 353</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Table 4: Pitch step-up measures for sequences involving postponed-SPPs

In addition to this step-up in pitch, the pitch range of the postponed-SPP is greater than the pitch range of the postponing-TCU. The pitch ranges of relevant parts of the talk in Fragments 50 to 53 are shown, in semitones, in Table 5. For each, the measures were made over all talk for which an F_0 trace is provided in the enhanced orthographic transcriptions of Fragments 50 to 53, divided according to its label as to where the boundary between the postponing-TCU and postponed-SPP occurs. The mean F_0 measures for each component are also provided to give some indication of what might be a central F_0 measure for each case.

It can be seen from Table 5, and from re-inspection of the enhanced orthographic transcriptions provided for the postponing-TCUs and postponed-SPPs in Fragments 50 to 53, that the pitch range of the postponing-TCU is wider than that of the postponed-TCU.

Also, in each case the mean F_0 is higher on the postponed-SPP than the postponing-TCU. This is indicative of not only the first stressed syllable of the postponed-SPP being stepped up relative to the postponing-TCU, but rather that there is an overall shift up in pitch on the postponed-SPP relative to the postponing-TCU.
Chapter 5. Postponed second pair parts

<table>
<thead>
<tr>
<th>Fragment</th>
<th>Postponing-TCU</th>
<th>Postponed-SPP</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>range (ST)</td>
<td>mean F₀ (Hz)</td>
<td>range (ST)</td>
</tr>
<tr>
<td>50</td>
<td>8.6 171</td>
<td>13.0 263</td>
<td>4.5 92</td>
</tr>
<tr>
<td>51</td>
<td>6.0 183</td>
<td>20.3 238</td>
<td>14.3 55</td>
</tr>
<tr>
<td>52</td>
<td>5.3 181</td>
<td>10.9 191</td>
<td>5.6 10</td>
</tr>
<tr>
<td>53</td>
<td>12.3 181</td>
<td>15.1 232</td>
<td>2.8 41</td>
</tr>
</tbody>
</table>

Table 5: Pitch range and mean pitch measures for sequences involving postponed-SPPs

These descriptions of this practice are being offered on the basis of a handful of cases. However, that these two features (i.e. a step-up in pitch and a wider pitch range on the postponed-SPP) are deployed in a systematic fashion makes it seem reasonable to conclude that these features are part of the design of the practice, and that they could be drawn upon by co-participants in parsing of the turns into postponing-TCU and postponed-SPP. Furthermore, a necessarily tentative explanation can also be offered for why the postponed-SPPs are marked by a step-up in pitch and a wider pitch range relative to the postponing-TCU (rather than, for instance, a step-down in pitch and a narrower pitch range). Within the LCA framework, one feature with which step-ups in pitch have been shown to be associated is with the beginning of new topic/sequence start-ups (see e.g. Couper-Kuhlen 2003; Local & Walker 2004). Therefore, having a step-up in pitch on the postponed-SPP is one way in which participants can display that the postponed-SPP is operating on a different sequential trajectory from the postponing-TCU. This display, therefore, can be drawn upon by co-participants in their online parsing of the ongoing talk into a postponing-TCU (which operates on a previous sequential trajectory) and a postponed-SPP (which operates on the sequential trajectory established by the FPP). Other features which contribute to this parsing are presented in the sections which follow.

Loudness

Goldberg, in the first published work combining explicit analysis of phonetic and sequential design (and establishing relationships between them) makes
the following observation concerning loudness characteristics of talk in sequences:

In the question/answer sequences inspected a speaker’s sequence initial utterance was found to be regularly raised in peak amplitude relative to his own just prior utterance.

(Goldberg 1978: 203, emphasis in original)

This finding would seem to make prediction(s) for the loudness characteristics of sequences involving postponed-SPPs: that the postponed-SPP will be louder than the postponing-TCU. Also, given Goldberg’s claim that

over the course of a question/answer sequence, speakers lower the peak amplitude level of their successive utterances

(Goldberg 1978: 205, emphasis in original)

it would seem reasonable to expect that the postponing-TCU would be less loud than that speaker’s prior utterance given that, as has been shown above, the postponing-TCU is part of the sequential trajectory set up by the talk prior to the FPP.

However, (i) the overall loudness of the postponing-TCU is not routinely lower than that of the speaker’s prior utterance, and (ii) the overall loudness of the postponed-SPP is not routinely higher than that of the postponing-TCU. The sections which follow will discuss each of these points in turn, before setting out the claims which can be made regarding the loudness characteristics of sequences involving postponed-SPPs.

First, with regard to the overall loudness characteristics of the postponing-TCU in relation to the overall loudness characteristics of that speaker’s prior utterance: in three of the four cases (Fragments 50, 52, and 53) no noticeable difference in overall loudness is evident (and the loudness characteristics are therefore not represented in the enhanced orthographic transcriptions). In one case (Fragment 51) a drop in overall loudness is apparent on the postponing-TCU relative to that speaker’s prior utterance. It would seem, therefore, that the regularity concerning the overall loudness characteristics of the postponing-TCU relative to that speaker’s prior utterance is that postponed-TCUs have the same overall loudness characteristics as that speaker’s prior utterances, or are less loud.
Second, with regard to the overall loudness characteristics of the postponed-SPP in relation to the overall loudness characteristics of the postponing-TCU: in three of the four cases (Fragments 50, 52, and 53) no noticeable difference in overall loudness is evident. In one case (Fragment 51) an increase in overall loudness is apparent on the postponed-SPP.\footnote{A similar step-up in loudness on the postponed-SPP is apparent in a case yet to be presented (Fragment 55, beginning at line 16).}

It would seem, therefore, that the regularity concerning the overall loudness characteristics of the postponed-SPP relative to the postponing-TCU is that postponed-SPPs have the same overall loudness as postponing-TCUs, or are louder.

In summary, then, the following statements can be made regarding the overall loudness characteristics of sequences involving postponed-SPPs:

1. The postponing-TCU is not louder than the talk from that speaker which precedes it.

2. The postponed-SPP is not quieter than the postponing-TCU.

It may seem that the findings concerning the overall loudness of the components in sequences involving postponed-SPPs are rather weak. However, it remains important to document their overall loudness characteristics as this forms part of the practice of postponing a SPP, and thus forms part of speakers’ core linguistic and communicative competences. One obstacle in forming even tentative explanations for the patterns of loudness which are observed in these constructions is that knowledge of the functions of loudness in interaction is very limited (see Goldberg 1978 for an attempt at relating intensity measures to sequence organisation; the role of loudness — alongside other phonetic parameters — in certain practices has also been documented: see e.g. French & Local 1983, 1986; Local & Walker 2004; Walker 2004). However, one tentative explanation would be that, as with their pitch characteristics, the loudness characteristics of these turns can assist in the parsing of these turns into their constituent parts (i.e. the postponing-TCU and the postponed-SPP), and index their relationships with the preceding talk.
Other features

Along with pitch and overall loudness, silences, inbreaths, initial “well”s, and initial “uh(m)s” contribute to the task of parsing the components in sequences involving postponed-SPPs. One characteristic location for such features, either alone or in clusters, is the beginning of SPPs (see Chapter 4 of this thesis; see also Davidson 1984). Furthermore, they typically do not occur at the beginning of turn continuations (e.g. increments, abrupt-joins, and pivots, extended discussion of which is provided in Chapter 6). This pattern of distribution is also evident in sequences involving postponed-SPPs. That is, these features do not occur at the beginning of the postponing-TCU (which routinely occur in terminal overlap with, or immediately following, the FPP), but do occur at the beginning of postponed-SPPs. Some or all of these features are apparent between the postponing-TCU and the postponed-SPP in Fragments 50 and 53.\(^6\) It would seem, therefore, that avoiding the deployment of these features at the beginning of the postponing-TCU is a reflection of the status of the talk which immediately follows the FPP as a continuation of the talk which preceded it, rather than the SPP. Similarly, the deployment of these features at some point in the production of the turn adumbrates the onset of the postponed-SPP, through the association of these features with other kinds of SPP. It would seem, therefore, that these features are one resource which participants can drawn upon in their construction of turns involving postponed-SPPs in order to assist in the parsing of those turns by co-participants, and in signalling the relationship of components in those turns to the talk which preceded them.

However, it should be noted that while these features can (and certainly do) contribute to the parsing of units, their presence is not a criterial feature of sequences involving postponed-SPPs. For instance, continued vocal fold vibration is apparent between the postponing-TCU and the postponed-SPP in Fragments 51 and 52. The observation that there may, but need not, be silences and inbreaths intervening between the components of these sequences underscores the point that is a complex of phonetic features are involved in delimiting these units, not all of which need be present in every case.

\(^6\)See also Fragment 55 below, beginning at line 16.
Chapter 5. Postponed second pair parts

Another design feature of these sequences which informs their interpretation, particularly with regard to the relationships which hold between components of the sequences, is their lexical content. In each of the cases shown in Fragments 50 to 53, the lexical design of the talk which immediately follows the FPP (i.e. postponing-TCU) works to prohibit the interpretation of that talk as a SPP: that is, the talk which immediately follows the FPP (the postponing-TCU) could not be a SPP to that FPP. This emphasises the point that a range of linguistic resources — including phonetic and lexical design — are drawn on in constructing these sequences.

In one particular sequence (reproduced as 50’’ for convenience) certain lexical choices made in the talk immediately following the FPP can be seen as the result of an attempt to prohibit interpretation of that talk as the SPP. This observation is particularly apposite as the alternative, intuitively more “natural” formulation of the talk following the FPP would not have prohibited interpretation of the talk as a SPP. The lexical choice to focus on here is Nancy’s use of “whom” in her postponing-TCU in line 18.

(50’’) NB.II.2-439s

1 Emm: I think some of these kids need a good job though
2 too
3 (0.5)
4 Emm: get out and do a little work
5 (0.4)
6 Nan: well of course all the kids in this particular
7 class you know are either full time students or
8 they work during the day and go to school at
9 ni:ght
10 (0.2)
11 Emm: m[m h m]
12 Nan: [lot of them w]ork part time [and
13 Emm: [mm h[m
14 Nan:][go part day
15 and part night .hhhhhhhh um:::
16 (0.2)
17 F Emm: they’re not real kookie then=
18 P Nan: =several of whom are married
19 (0.2)
20 S Nan: oh no
21 (0.3)
22 Nan: no hah-ah the[y may u- l]ook like
23 Emm: [(mhm)]
24 Nan: you know I mean we have a couple of real long
25 hairs

154
Due to the use of “whom”, which takes as its antecedent “the kids in this particular class” (lines 6 to 7), Nancy’s utterance at line 18 is a relative clause to the whole of her prior talk in lines 6 to 15. It can be interpreted, therefore, as a continuation of that prior talk, and specifically not as a SPP to Emma’s “they’re not real kookie then” (line 17).

At the point at which Nancy chose to use “whom” she could have chosen to use “them”. However, the choice of “them” would have important consequences for the relationships which that talk would enter into with what precedes it. First, “several of them are married” would not be a relative clause and therefore would not be open to interpretation as grammatically symbiotic with Nancy’s prior talk. Second, “several of them are married” would be open to interpretation as a SPP to Emma’s FPP at line 17, particularly given that “them” (unlike “whom”) is the objective case formulation of Emma’s “they”. That is, “several of them are married” could be seen to be being offered by Nancy in the service of confirming their not being “kookie”, particularly given that a socially accepted, public display of commitment such as getting married might not be the kind of behaviour that would be expected from people who are “kookie”. The different relationships set up by each of these pronouns is represented in (54), where arrows indicate the pronouns’ antecedents.

\[
\begin{align*}
(54) \quad & \text{a. A: } \ldots \text{all the kids in this particular class} \ldots \\
& \hspace{1cm} ; \\
& \hspace{1cm} B: \text{ they’re not real kookie then} \\
& \hspace{1cm} A: \text{ several of whom are married} \\
& \hspace{1cm} b. A: \ldots \text{all the kids in this particular class} \ldots \\
& \hspace{1cm} ; \\
& \hspace{1cm} B: \text{ they’re not real kookie then} \\
& \hspace{1cm} A: \text{ several of them are married}
\end{align*}
\]

It would seem, therefore, that both the phonetic design and lexical choice play an active role in the practice of postponing a SPP: phonetic design and lexical choice are both employed to indicate the relationships between units of talk in sequences involving postponed-SPPs.
5.6.3 Extending the analysis

This section covers two issues which have not been raised up to this point, but which deserve some attention. The first concerns two cases which shed further light on how features of phonetic design facilitate the demarcation of the components; the second concerns two cases which pose challenges for the account presented up to this point.

First, Fragments 52 and 53 (reproduced below for convenience) offer particular insights into the role of phonetics in demarcating the boundary between the postponing-TCU and the postponed-SPP, which have not been discussed up to this point.

(52′′) NB.II.4.7-385s detail

7 P→ Nan: works out there

8 S→ Nan: yes he’s living...

(53′′) Holt.SO.88.2.11-186s detail

10 P→ Les: [for his test] I mean yeah

11 S→ Les: .hhh well (.) um (.) I don’t think...

In both Fragment 52 and Fragment 53, the talk which follows the FPP has the structure [some talk]+[“yes”-token]+[more talk]. However, in each case the “yes”-token is interpretable differently in terms of which component — the postponing-TCU or the postponed-SPP — it is a part of: in Fragment 52 “yes” marks the beginning of the postponed-SPP; in Fragment 53 “yeah” marks the end of the postponing-TCU. Crucially, it is the phonetic design features of the talk which allow parsing of the “yes”-token with one component or
the other. In Fragment 52 the main factor in interpreting “yes” as part of the postponed-SPP is the increase in pitch across its extent (the increase measuring 8.6 ST): this increase in pitch has been shown to be a routine characteristic of the onset of postponed-SPPs. In Fragment 53 the phonetic design features which support the interpreting of “yeah” as part of the postponing-TCU are (i) the absence of a step-up in pitch from “mean” to “yeah”, or indeed any other kind of pitch disjunction at this point (cf. the pitch step-up associated with the onset of the postponed-SPP), and (ii) the inbreath following the production of “yeah”.

In addition to the observation that the “yes”-tokens are packaged differently in Fragments 52 and 53, it is possible to hypothesise as to why this might be the case. In Fragment 52, packaging the “yes”-token with the SPP allows that “yes”-token to act as one component of the type-conforming (yes/no) response which the FPP made relevant (Raymond 2000). Such a (yes/no) response is not relevant in Fragment 53: the absence of this constraint permits its packaging with the postponing-TCU.\(^7\)

The second issue which illuminates the current investigation into sequences involving postponed-SPPs is illustrated by the two candidate instances of the phenomenon in Fragment 55, beginning at line 9 and at line 16.

(55) Holt.SO.88.1.5-42s

\[
\begin{array}{ll}
1 & \text{Gor: that’s really sad} \\
2 & (0.2) \\
3 & \text{Gor: that’s a real shame} \\
4 & (0.5) \\
5 & \text{Ann: it is isn’t it} \\
6 & (0.6) \\
7 & \text{Gor: yeah} \\
8 & (0.5) \\
9 & \text{F}_1 \rightarrow \text{Ann: have you got yours booked up} \\
10 & (0.7) \\
11 & \text{F}_1 \rightarrow \text{Gor: have I got mine}
\end{array}
\]

\(^7\)The absence of this constraint may in fact demand that the yes-token be packaged this way i.e. with the postponing-TCU. However, further instances of this organisation would be required to justify making this claim.
Chapter 5. Postponed second pair parts

The problem that the two candidate instances of the phenomenon contained in Fragment 55 poses for the account being offered here is this: the first candidate instance (beginning at line 9) does not have the same phonetic design as the cases described so far, while the second case (beginning at line 16) does.
Specifically, with regard to the phonetic design, in the first candidate instance in Fragment 55 there is continued vocal fold vibration between “mine” and “no”, and an absence of a step-up in pitch. This phonetic design is therefore striking in its differences from the case presented in Fragment 52, though they might be expected to be similar: in each case (i) a FPP makes relevant a type-conforming (yes/no) response on its completion (ii) talk which is not that response follows (iii) following that talk, the type conforming (yes/no) response occurs. The phonetic design of the second candidate instance in Fragment 55 is much like that of the others that have been discussed so far, with a step-up in both pitch and overall loudness from the postponing-TCU to the postponed-SPP.

The sections which follow set out one possible way for accounting the differences between the phonetic design of the first candidate instance in Fragment 55 and (i) the second candidate instance on the one hand, and (ii) the other instances of the phenomenon presented. There are two reasons why time discussing these cases is well spent. The first is the more general point: in a qualitative framework such as the one being worked in here the details of single instances must be handled at some point. The second point is more specific to the investigation into sequences involving postponed-SPPs, as these sequences offer previously unmentioned insights into the organisation and function of the practice.

The main thrust of the argument to be made here is that what might be considered recyclings of a first pair part (or, for brevity, RECYCLED-FPPS), such as the two cases in Fragment 55 are not postponing-TCUs of the kind exemplified by Fragments 50 to 53. Therefore, the sequences which they build are not postponed-SPP sequences in the sense that the sequences in Fragments 50 to 53 are. As the term “postponed-SPP” and locutions derived from it such as “sequences involving postponing-SPPs” have been used here in a narrow technical sense, they will not be applied to either of the cases shown in Fragment 55.8

In each of the cases shown in Fragments 50 to 53, the postponing-TCU follows the sequential trajectory of the talk prior to the production of the FPP,

8This concern for appropriate and consistent use of terminology echoes one of the principles of Firthian linguistics:
and is plainly not a move to produce the SPP which the FPP makes relevant: rather it is a move to postpone its production. The recycled-FPPs in Fragment 55 do not have these features: they do not follow the sequential track of the talk prior to the FPP, but rather do represent a move towards the production of the SPP made relevant by the FPP. Indeed, repeats preceding a move to produce what might be considered a “SPP-proper” were identified by Kelly & Local as one component of turns which display recognition (Kelly & Local 1989a: 272–277).

As the sequences involving recycled-FPPs in Fragment 55 do not have the same interactional characteristics as the sequences involving postponed-SPPs, it might actually be expected that they would not exhibit the same phonetic characteristics. Specifically, as the talk which immediately follows the FPP (in the first case “have I got mine”; in the second “am I going to France”) does not continue on the trajectory of talk prior to the FPP, and the talk which follows (“no”; “.hhhh um .hh (0.2) Ihu:- had a reply…”) is not the first move towards producing a SPP, strict demarcation between the units may not be an exigency which this practice is required to handle; it is, however, in sequences involving postponed-SPPs, and points in other sequences where the trajectory of the talk is changed (Local & Walker 2004).

One corollary of this account for the phonetic design of the sequence which begins at line 9 of Fragment 55 (i.e. that its phonetic design is unlike that of the sequences involving postponed-SPPs as it is, in fact, not a sequence involving a postponed-SPP) is that the second sequence involving a recycled-FPP in Fragment 55 (beginning at line 16) becomes potentially problematic. It is potentially problematic as the phonetics of this particular case resemble those described for the sequences involving postponed-SPPs, particularly in that it is packaged as two units via a step-up in pitch, a step-up in loudness, and an inbreath intervening between the recycled-FPP and what follows. A possible explanation for this apparent anomaly is presented in the sections which follow.

“How can the language under description be dealt with clearly if the language of description and the language of translation are loose and careless and full of theoretical puerilities…?” (Firth 1957: 19–20, emphasis in original)
In a number of cases of sequences involving postponed-SPPs presented so far, the FPP can be seen to prematurely curtail the ongoing sequence. To discuss but one case: in Fragment 51 (reproduced below) no assessment is offered by Leslie in response to Joyce’s telling concerning the behaviour of her (Joyce’s) dog. Rather, all that is forthcoming from Leslie is her receipt (“oh”) at line 9.

(51”) Holt.O.88.1.8-30s

1 Joy: she was absolutely stupid Geoff put down the
2 phone in the hall and went to pick up the (0.5)
3 you know the cordless phone in the
4 Joy: [bedroom to] bring it in to me
5 Les: [y e s]
6 Joy: .hhhhhh and as soon as he sort of (.) hurries
7 down the (0.5) down the corridor (.) she starts
8 to whi[ne
9 Les: [oh
10 (.)
11 F→ Les: are you (not/lot) in bed are [you
12 P→ Joy: [most peculiar
13 S→ Joy: no no no
14 Joy: I[’m–
15 Les: [oh no
16 (0.3)
17 Joy: no I’m in the sitting room
18 (0.2)
19 Les: ah .hhhh no the thing is um I’m teaching Tuesday

Following Leslie’s FPP, Joyce produces a postponing-TCU which provides an assessment of the dog’s behaviour — “most peculiar” — which is produced in the face of Leslie not having produced the relevant assessment herself.

Likewise, premature curtailment seems to figure quite plainly in the sequence beginning at line 16 of Fragment 55. Early in Gordon’s move into the touched-off topical development of talk about his driving (triggered by Anna’s enquiry at line 9) but clearly well after the turn’s start (“.hhhh I was”) Anna starts up her own talk. Rather than one of the speakers dropping out on finding themselves talking in overlap, both speakers continue: Gordon on his touched-off topic of driving, and Anna on an apparently unrelated out-of-the-blue topic proffer in which she enquires whether or not Gordon is going to France. Immediately on completion of Anna’s FPP, rather than produce a SPP, Gordon recycles Anna’s FPP (with an appropriate change of
deixis) — “am I going to France” (line 16) — and follows this recycled-FPP with a move to respond more directly to Anna’s FPP.

There are two key pieces of evidence for seeing the sequence on Gordon’s driving as having been prematurely curtailed. First, the sequence which Gordon’s talk at line 13 is a part of does not seem to be complete in any sense: it appears to be both a topic proffer and the start of a news telling, yet it doesn’t get the kind of uptake from Anna which such a turn makes relevant. Second, following talk about the progress of his plans to go to France (data not shown), Anna’s assessment and Gordon’s reciprocation (lines 30 to 32), Gordon launches talk which appears to be a version of that curtailed by Anna at line 13: “I was driving last night” (line 32). Clearly, then, from Gordon’s point of view the sequence on his recent driving experiences wasn’t complete at the point that Anna issued her FPP at lines 14 to 15.

Crucially, therefore, this sequence (beginning at line 14 of Fragment 55) is unlike the sequences involving postponed-SPPs in that what follows the FPP is not on the trajectory of the talk prior to the FPP. However, it shares with other sequences involving postponed-SPPs the characteristic of the FPP prematurely curtailing an ongoing sequence. It is possibly due to this characteristic — and, by extension, the need for a practice with which to draw attention to the premature curtailment of a sequence by a co-participant — that the talk is phonetically packaged/demarcated in a similar fashion to the packaging/demarcating of postponing-TCUs and postponed-SPPs. Furthermore, the recycled-FPP in the first case shown in Fragment 55 is not responsive to the premature curtailment of a sequence, which might explain why the phonetic design features of the two cases is so different.

While it is important not to lose sight of the fact that this account draws on two instances of recycled-FPPs, its ability to handle the details of any strips of naturally occurring interaction in an apparently cogent fashion suggests that it would be an interesting point of departure for future investigation into both postponed-SPPs and recycled-FPPs.
Chapter 5. Postponed second pair parts

5.7 Summary and implications

In summary, the preceding sections have provided an account of sequences involving a phenomenon referred to as postponed second pair parts. An account has been provided of some of the design features which make postponed-SPPs discriminable from the postponing-TCUs which preceded them; it was shown that certain features identified the postponed-SPP as distinct from the postponing-TCU which preceded it, and that some of these features (e.g. the presence of some or all of: step-up in pitch, intervening silences, inbreaths, “well”s and “uh(m)”s) were used to identify its beginning. Also, the interactional uses to which postponing SPPs are put has been demonstrated, and it has been shown that certain of these interactional functions (i.e. ensuring that some bit of talk gets said, in the face of a FPP which changes the sequential trajectory of the talk) are recurrent in the data-set.

The main limitation of the study is that it is based on a small data-set. However, sheer rarity of occurrence should not prevent the analysis of this, or any other, phenomenon in talk-in-interaction. Clearly, postponing a SPP is a practice employed by speakers, irrespective of the apparent infrequency of its deployment. Furthermore, a number of useful observations concerning both the design and deployment of the practice have been possible on the basis of the current data-set.

There are two main pay-offs of the account of postponed-SPPs provided in this chapter. First, a description has been provided of a previously un-explicated practice, in terms of the design and usage of the practice in conversation. Second, the description has shed more light on how participants structure their talk in sequences, and how they use features of its design to mark out the relationships which hold between elements of their own talk (see also Auer 1996; Local & Walker 2004; Walker 2004) and between those elements and the talk of a co-participant (see also Goldberg 1978).

The final observation to be made in this chapter arises from a comparison of the analyses proposed in this chapter and in Chapter 4. The observation relates to the methodological issue of how data-sets might be constructed in (L)CA research. The analysis of requests (Chapter 4) was a based on a data-set constructed on the basis of activity type; the analysis of postponed-SPPs,
on the other hand, was based on a data-set collected on the basis of sequence organisation rather than activity type (as adjacency pairs are seen as one type of sequence organisation; see Schegloff 1995b). While it seems relevant to register the possibility of constructing data-sets in each of these ways, it is also important to note that data-sets collected under each method (i.e. by activity type and by sequence organisation) can yield interesting observations. For instance, regularities concerning the structure of request-response beginnings would not have been so easily recognisable if a data-set consisting of assorted activity-types was being examined. In the case of the sequences involving postponed-SPPs, it would seem that the design features of the sequences are directed toward facilitating the parsing of the units involved (i.e. the postponing-TCU and the postponed-SPP). It should be noted that although FPP type was not controlled for in any way during the construction of the postponed-SPP data-set, the FPP-type doesn’t appear to have had an impact on the design features of the postponing-TCU or the postponed-SPP.

The next, and final, analysis chapter focuses on matters of sequential organisation, in that it is concerned with aspects of the organisation of turn-taking (Schegloff 1995b). Analysis focuses on one practice for continuing a turn at talk past a point of upcoming possible completion.
Chapter 6

Pivots

The account provided in this chapter is quite different from those accounts provided in Chapters 3 to 5: in this chapter a practice is described in which the phonetic design of talk is not only systematic with regard to its function in interaction, but rather it is a criterial feature of the practice. One upshot of this aspect of the account is that in this case, comparability is established through a consideration of both turn construction and phonetic design, rather than sequence organisation and action as in the previous chapters.

One of the main arguments in Chapter 3 was that certain features of phonetic design are used to mark transition relevance, and, moreover, are oriented to as such. This chapter describes a practice in which speakers manipulate the phonetic design of points of possible syntactic and pragmatic completion in order to continue talking. This practice, therefore, demonstrates one way in which speakers can manipulate linguistic resources — including features of phonetic design — in order to achieve particular interactional goals.

More specifically, pivots (the label used for the practice described in this chapter) involve the production of talk such that the end of one TCU is also the beginning of another: the end of the first TCU is therefore camouflaged to some extent. This practice therefore has an obvious relevance to the investigation of participants’ online parsing of talk, and the means by which they signal the possible endings of units of talk. Furthermore, in that pivots would
not appear to cause problems for the interpretation of talk by co-participants (but rather represent a practice available to participants with which they can continue talking past a point of possible syntactic and pragmatic completion), they also question notions of grammaticality, and underline the point that structures which might be judged by analysts as ungrammatical are systematically deployed in talk-in-interaction.

Pivots also offer an interesting contrast to turns involving postponed-SPPs (see Chapter 5). In that practice, certain design features seemed to be directed at signalling the disjuncture between the turn components. In turns built with pivots, phonetic design emphasises a fittedness of the components to each other, establishing the practice as one for what might be regarded as the smooth continuation of a turn at talk.

The chapter is structured as follows: Section 6.1 sets out the background to the study, and the rationale for conducting it in the context of this thesis; Section 6.2 sets out certain research questions; Section 6.3 describes the data-set for the investigation; Section 6.4 provides an account of the practice, first presenting an account of the phonetic design of pivots and the turns which they build, and then outlining some of the uses of pivots in interaction; Section 6.5 summarises the chapter, and draws out some implications of the account.

6.1 Background and rationale for the study

This section describes previous work relating to pivots in English talk-in-interaction (Section 6.1.1), and some motivations for engaging in their description in the context of this thesis (Section 6.1.2).

6.1.1 Previous work on pivots

It would seem that a systematic study of pivots in English talk-in-interaction is yet to appear. However, mention has been made of the phenomena in English talk-in-interaction as part of other investigative endeavours e.g. Sacks (1992b: 146), Schegloff (1979b: 275–6), Kitzinger (2000: 186). The discussion in Sacks (1992b: 146) revolves around the following instance:
In Fragment 56 “about three weeks ago” can be understood as the end of one TCU (“we went up there about three weeks ago”) and the beginning of another TCU (“three weeks ago we was up at Mariposa”); it has what will be referred to as LEFTWARDS INTERPRETATION and RIGHTWARDS INTERPRETATION. The shared bit of talk (“about three weeks ago”) will be referred to as a PIVOT; the talk which precedes it in the same TCU (“we went up there”) is the PRE-PIVOT; and the talk which follows (“we were up at Mariposa”) is the POST-PIVOT. So, a pivot is a bit of talk which ends at a point of possible syntactic and pragmatic completion (i.e. the pivot ends one TCU), and which also functions as the beginning of another TCU.

Pivots, and the turns and sequences in which they occur, are the focus of this chapter.

1The original transcription has been retained in this instance. It seems clear from the exemplar offered by Sacks that the phenomenon he was describing and “pivots” are one and the same, though the term is used here following Schegloff (1979b).

2The terms “pre-pivot”, “pivot”, and “post-pivot” are post hoc analytic terms. They should not be taken as a claim regarding speaker’s planning of utterances. For instance, there is no claim that what becomes a pre-pivot by virtue of a turn’s development is deployed as a pre-pivot at its point of production.

3Schegloff (1979b: 275) describes the following as incorporating a pivot:

\[
\text{((A has had a claim of hers called an exaggeration))}
\]

A: DON’T SAY that I’m exa-just say that I’m a liar.

However, the pivot — “j” in Schegloff’s description — does not satisfy the criteria for inclusion in the current data-set, as it does not represent a point of possible syntactic and pragmatic completion. The term “pivot” has been retained in this investigation due to the apparent overlap between the data-set described in Schegloff (1979b), and that constructed in the course of the current investigation, though clearly the criteria for inclusion in the data-sets are not identical. The instance provided by Schegloff (1979b: 275) and reproduced in this footnote might be referred to as a MUTATION, and future investigation may reveal the practice to be distinct from that practice described here.
6.1.2 Motivations

There are a number of main motivations for engaging in the description of pivots in this thesis. Pivots represent a distinct and under-investigated practice for continuing talk past a point of possible turn completion. Furthermore, (L)CA studies of other practices for continuing turns have yielded significant insights, both in terms of the phonetic design of the practices, and their function in interaction. These practices include INCREMENTS (grammatically fitted continuations of a turn at talk; see Auer 1996; Ford, Fox & Thompson 2002a; Schegloff 1996, 2000a; Walker 2004) and abrupt-joins (a practice for building a particular kind of multi-unit, multi-action turn; see Local & Walker 2004).

One outcome of this work has been the provision of a better understanding of the relationships between components of turns, and particularly how these relationships manifest themselves in terms of phonetic design (see also Chapter 5 of this thesis, where it was shown that the postponed-SPP was set apart from the postponing-TCU through its pitch configuration, loudness characteristics, and certain other features of phonetic design). These relationships between the components of turns built with each of the three practices — increments, abrupt joins, and pivots — are represented schematically in Figure 7. Each large triangle represents a single TCU.

Figure 7(a) represents continuation via an increment, and is based on the descriptions in Walker (2004). The first triangle represents a possibly complete TCU; the second (incomplete) triangle represents the increment: a grammatically fitted continuation of that first TCU. The left edge of the triangle is left open to indicate that the increment is not a TCU in its own right, but rather re-completes the prior HOST TCU. One task handled by the phonetic design of increments (including pitch configurations, loudness characteristics, articulation rate, and certain articulatory details) is the signalling of a fittedness of the increment to the host, and the camouflaging of the beginning of the increment.\footnote{The space between the host and the increment might be taken as implying that the increment is produced after some kind of hiatus following the completion of the host. Indeed, this would seem to be the most common placement for an increment relative to its host (see Walker 2004). However, it should be noted that this is not the only position in which incre-}
Figure 7: Schematic representations of three practices for continuing a turn at talk; large triangles represent TCUs
Figure 7(b) represents continuation via an abrupt-join, and is based on the descriptions in Local & Walker (2004). In these cases, two discrete TCUs are produced in very close temporal proximity to each other, which is indicated by the closeness of the two triangles (for more detail see the account provided by Local & Walker 2004). As opposed to marking the fittedness of the second component to the first (cf. increments), in abrupt-joins part of the workload of the phonetic design is marking out — through a step-up in pitch and a step-up in loudness — the second component as disjunct from the first.

Figure 7(c) represents turn continuation via a pivot. In these cases, two TCUs are produced with some part of those TCUs shared between them, indicated by the smaller, shaded triangle which forms their intersection. As will be shown, pitch configurations, loudness characteristics, and articulation rate are among those features which mark out the fittedness of each component to the prior one (i.e. the fittedness of the pivot to the pre-pivot, and of the post-pivot to the pivot).

The study of pivots will also provide insights into how phonetic resources can be deployed in order to avoid signalling completion (cf. the resources for signalling transition relevance set out in Chapter 3).

6.2 Research questions

Taking as a starting point the outcomes of the limited previous work on pivots in English talk-in-interaction, and the motivations set out in the previous section, the following research questions were established:

1. What are the phonetic design features associated with pivots and the turns which they are used to build? This question breaks down into two further questions:

 (a) How is the signalling of transition relevance avoided at their ends?

ments occur, as they may occur immediately on bringing the host to possible completion (Schegloff 2000a; Walker 2004). Therefore, the space in the schema is meant to indicate a combination of the bringing to possible completion of the talk which the increment continues, and the period of time which often — but not always — passes between the end of the host and the increment.
(b) Which features of phonetic design are implicated in signalling the fittedness of each component of turns built with pivots (i.e. the fittedness of the pivot to the pre-pivot, and of the post-pivot to the pivot)?

2. Do pivots have a recurrent function and/or sequential distribution in conversation, aside from their facilitating the continuation of talk past a point of possible syntactic and pragmatic completion?

The exploratory study which is reported on in the sections which follow was designed to address these questions.

6.3 Data

The data-set reported on in this chapter comprises 33 pivots, drawn from the corpora described in Appendix C.

6.4 Analysis

Unlike Chapters 3 to 5, in this chapter, the analysis of aspects of the phonetic design of the practice will be provided before the analysis of the uses of the practice in interaction. The reason for this is that in this instance, the phonetic design is a criterial feature of the practice. That is, pivots are identified — in part — by their phonetic design: for instance, the phonetic design of must be such that the candidate pivot has both leftwards interpretation and rightwards interpretation. Establishing criteria in this way, i.e. in part on the phonetic design of talk, reflects the simultaneous availability of a range of resources (e.g. phonetic design, lexis, syntax) to the participants in interaction. It seems to make sense, therefore, that certain practices are identified (in part) by their phonetic design. Indeed, this is reflected in other LCA investigations in which one criterion for the inclusion of instances in a data-set is the phonetic design of talk (e.g. Couper-Kuhlen 2003; Local & Walker 2004; Ogden, Hakulinen & Tainio 2004).

However, this does mean that the account provided in Section 6.4.1 should not be considered a phonetic analysis of a data-set constructed by
reference to other parameters (as in Chapter 5, for instance, where the data-set was constructed with reference to aspects of sequence organisation), but rather as a laying bare of the phonetic details which are required in order that some bit of talk be deemed a pivot.

6.4.1 Phonetic design of pivots

The descriptions of the phonetic design of pivots, and the turns which they build, will focus on Fragments 57 to 59 in the first instance. In each fragment, the pivot is indicated by the frame surrounding the relevant part of the transcript; this convention will be retained throughout this chapter. It should be noted that while the descriptions of the phonetic design will be exemplified through discussion of these fragments, those descriptions are applicable to all cases in the data-set.

(57) NB.IV.3-185s; PIV005

```
(talk has been about colours of dresses which Lottie and Emma have seen on a recent shopping trip)

1 Lot: [any ]
2  → Emm: [but I]’(d) love the bone was so beautifuhh the
3 pink was exquisite
```

(58) NB.IV.4-708s; PIV014

```
(talk has been about buying a turkey for Thanksgiving dinner)

1 Lot: so I went down there and got at (. ) Rancho a
2 fresh one
3
4  → Emm: oh that’s what I’d like to have is a fresh one
```

(59) Frankel.T.C.1.1-422s; PIV006

```
(talk has been about the terminal illness of an acquaintance’s mother)

1 Ger: well
2
3  → Shi: you know I teh anyway it’s a hunk of shit goes
4 on I don’t have to tell you
```

The phonetic design of pivots would seem to be directed at handling at least the following three tasks:

1. Avoiding the signalling of transition relevance towards the end of the pivot;
Chapter 6. Pivots

2. Marking the fittedness of the pivot to the pre-pivot, in order to allow leftwards interpretation of the pivot;

3. Marking the fittedness of the post-pivot to the pivot, in order to allow rightwards interpretation of the pivot.

The discussion which follows is organised around these three tasks for phonetic design.

Avoiding signalling a TRP at the pivot-end

One striking feature of pivots is that the constellations of phonetic events associated with the signalling of transition relevance do not occur at their ends. This section deals with how the phonetic markers of transition relevance are avoided, informed by the findings of Chapter 3 and other published work on transition relevance in English talk-in-interaction (e.g. Ford & Thompson 1996; Local et al. 1986; Wells & Macfarlane 1998; Wells & Peppé 1996). That the phonetic design of pivot-ends should be such that transition relevance is not signalled would seem to reflect the fact that pivots end at point of possible syntactic and pragmatic completion: that is, phonetic design represents the only remaining set of resources for signalling that the talk is not transition relevant. It should be noted that co-participants typically do not start up their own talk following the pivot but rather wait until the end of the post-pivot talk or later, suggesting an orientation to the absence of transition relevance at the end of the pivot.

There are three features of pivot-ends which seem to be relevant to the avoidance of signalling transition relevance. These features are (i) absence of pitch configurations which signal transition relevance, (ii) absence of final slowing down, and (iii) close temporal proximity of the post-pivot to the pivot; each of these aspects of phonetic design are dealt with in turn.

Absence of pitch configurations which signal transition relevance

Certain pitch configurations are commonly associated — when combined with certain other features — with transition relevance (e.g. falls terminating low

\[^{5}\text{It should be noted that, while each case exhibits at least one of these characteristics, not all cases exhibit all of these characteristics.}\]
in the speaker’s range, or rises terminating above the middle of the speaker’s range; see Chapter 3, for instance). However, such pitch configurations are not necessarily apparent at the end of pivots.

Fragment 57 illustrates the point. Figure 8 presents an F_0 trace of the pivot and surrounding talk from Fragment 57; the y-axis represents the speaker’s pitch range. The figure shows that the pivot (“the bone”) has a rising falling pitch, and the point at which this fall terminates can be measured as 189 Hz. The y-axis in Figure 8 represents the speaker’s pitch range: it can be seen, therefore, that this fall does not terminate low in the speaker’s range (cf. the designed-to-be and treated-as complete utterances in Chapter 3). Furthermore, other designed-to-be and treated-as complete turns regularly exhibit much lower terminal pitches. For instance, the next point in her talk which is treated as complete (ending with “exquisite”, line 3) terminates at 130 Hz: some 6.5 ST lower than the end of “bone”.

Absence of final slowing down Turn-final slowing down has been associated with turn-endings in (L)CA investigations (e.g. Local et al. 1986; Ogden 2001; Schegloff et al. 1977). However, final slowing down is routinely absent from pivot-ends, which regularly exhibit the kinds of durational characteristics of other medial tokens by the same speaker. So, for instance, in Fragment 57 the duration of the medial “love” measures 593 ms, whereas the
pivot-final “bone” (which is also a CVC syllable) has a duration of 506 ms — that is, rather than being longer than the medial “love”, which would be indicative of turn-final slowing down, here is in fact a slight speeding up. Likewise, in Fragment 58 the pivot-final “have”, which is stressed, measures 303 ms, while the preceding stressed syllable (“like”) measures 384 ms.

The significance of these measures is that they demonstrate that pivots do not routinely exhibit the kinds of turn-final slowing down which other LCA studies have reported as being associated with turn-endings: it should be noted, however, that pivot-ends do not exhibit the kinds of shortenings observed in other practices (e.g. abrupt-joins; see Local & Walker 2004). One plausible explanation for producing pivots with durational characteristics which are comparable with other medial tokens, is that speakers are claiming the legitimacy of their continuation. One function of the temporal compression in abrupt-joins is to pre-empt another’s starting up: in doing so, attention is drawn to that very possibility. By avoiding this temporal compression in the shift from pivot to post-pivot talk, speakers do not so much display a pre-empting of transition relevance; rather, they produce talk as if transition relevance was not even a possibility.

Close temporal proximity of the post-pivot to the pivot Across the collection, close temporal proximity of the post-pivot talk to the pivot is regularly apparent, which serves to compress the space at the end of the pivot in which a co-participant might start up their talk. In Fragment 57 this close temporal proximity, and resulting compression of the transition space, is achieved through the continuation of voicing from the pivot (“the bone”) into the post-pivot (“was so…”). In support of this claim, continued periodicity across this join can be seen in the speech-pressure waveform of Figure 8. In Fragment 58 creak phonation for the pivot-final “have” continues up to the beginning of the post-pivot “is”. In Fragment 59 this close temporal proximity manifests itself through a velar closure (rather than an alveolar one) in anticipation of the velar closure at the start of “goes”. Furthermore, the oral occlusion at the end of “shit” is released into the vowel of “goes” without delay.

In summary, constellations of phonetic features which have been identified as signalling transition relevance are absent from pivot-ends. Avoiding
the production of pivot-ends with the phonetic features which can signal transition relevance is essential for the success of pivots as a practice for turn continuation, as pivots end at points of plausible syntactic and pragmatic completion.

In addition to avoiding the signalling of transition relevance, the phonetic design of turns built with pivots must be such that the pivot has possible leftwards interpretation (i.e. the pivot is fitted to the talk which precedes it) and possible rightwards interpretation (i.e. the post-pivot talk is fitted to the pivot). The phonetic resources implicated in this task include pitch configuration, loudness, articulation rate, and certain other features. The sections which follow discuss the role of these features of phonetic design in marking the fittedness of the components of turns built with pivots.

Phonetic markers of the fittedness of the pivot to the pre-pivot

This section describes how phonetic resources are used to mark the fittedness of a pivot to the pre-pivot talk, to afford leftwards interpretation of the pivot.

Pitch configuration Pivots are produced such that they begin within what can be described as the pitch trajectory of the end of the pre-pivot.\(^6\) That is, there are no pitch disjunctions marking the boundary between the pre-pivot and the pivot (cf. the pitch disjunctions described between TCUs in Local & Walker 2004 and Couper-Kuhlen 2003, which are involved in the marking of new topics/sequences).

The F\(_0\) trace in Figure 8 illustrates the point. The final syllable of the pre-pivot ("love") exhibits rising-falling pitch; the pivot ("the bone") begins in this trajectory, with the unstressed "the" being produced in the same part of the pitch range as that in which "love" ended. There is also no indication of a pitch disjunction between "the" and "bone": although "bone" reaches a much higher pitch than "the" (in part due to "bone" being a stressed syllable), it begins in the same part of the pitch range as "the" ended.

\(^6\)Whether the pivot is in the pitch trajectory of the pre-pivot is decided on the basis of auditory analysis, supported by inspection of F\(_0\) traces where appropriate. It is not based on the running of some algorithm on the speech sample, for instance.
The production of pivots in the pitch trajectory of the pre-pivot brings off the [pre-pivot]+[pivot] talk as being all of a piece (cf. the relationships between turn components in turns built with abrupt-joins; see Local & Walker 2004); indeed, this effect is contributed to by each of the phonetic resources described in what follows.

Loudness As with the pitch configurations of pivots, the loudness characteristics of pivots mark them out as being of a piece with the pre-pivots: pivots are produced such that there is what might be described as overall loudness matching of the pivot to the pre-pivot. That is, relative to the loudness of the pre-pivot, there are no disjunctive step-ups or step-downs in loudness on the pivot (cf. Local & Walker 2004).

Articulation rate As with the pitch and loudness characteristics of the pivot, pivots are produced such that there is overall articulation rate matching of the pivot to the pre-pivot. To describe but one example in more detail: in Fragment 58 the metrical feet involving the pre-pivot and pivot are measurable at between 1.5 and 2.0 fps, with a mean articulation rate of 1.7 fps.

Further observations Certain further observations can be made alongside those concerning pitch, loudness, and articulation rate. Also contributing to the notion of the pre-pivot and the pivot being of a piece is that hiatuses (e.g. glottal or supra-glottal occlusions) don’t seem to occur between the pre-pivot and the pivot. Rather, particularly close temporal proximity of the two components is routinely observed. One way in which this close temporal proximity manifests itself is through the continuation of phonation across the join between the pre-pivot and the pivot: this can be seen in the speech-pressure waveform in Figure 8, across the join between “love” and “the”. This absence of glottal and supra-glottal occlusions prevents this point in the construction of the turn (i.e. the join between the pre-pivot and the pivot) being seen as a point of self-repair where one line is aborted in favour of another (Jasperson 1998, 2002). So, for instance, the talk in Fragment 57 comes off as “I(‘d) love the bone was so…” rather than “I(‘d) love- the bone was so…”.

This section has gone some way in describing how features of phonetic design are used to mark out the pivot and the pre-pivot as being of a piece,
rather than two separate bits linked by the possibility of being parsed (gram-
matically) as part of the same TCU. Focusing on the same parameters as this
section, the next section will explore the second of the tasks for features of
phonetic design: how those features may be used in signalling that the post-
pivot and the pivot are fitted together.

Phonetic markers of the fittedness of the post-pivot to the pivot

This section describes the role of features of phonetic design in marking the
fittedness of the post-pivot to the pivot. As with the markers of fittedness of
the pivot to the pre-pivot, these features involve pitch configuration, loud-
ness, articulation rate, and certain other features. Each of these feature-sets is
described in turn in what follows.

Pitch configuration In the same way that pivots are produced in the pitch
trajectory of the pre-pivots, post-pivots are produced in the pitch trajectory
of the pivots, marking out the two parts as being of a piece. Again, this char-
acteristic is illustrated in Figure 8. It can be seen that “bone” (which occurs at
the end of the pivot) has a rising-falling pitch contour, and that “was” (which
begins the post-pivot talk) is produced in the pivot’s pitch trajectory, with a
falling pitch from the point in the speaker’s range at which “bone” ends.

Loudness With regard to loudness, the loudness characteristics of the post-
pivot are matched to those of the pre-pivot. There are no disjunctive step-ups
or step-downs in loudness from the first part (the pivot) to the second part
(the post-pivot) in the data-set.

Articulation rate As with the matching of post-pivots’ pitch and loudness
characteristics to those of the pre-pivot, post-pivots are fitted to pivots with
respect to articulation rate. For instance, in Fragment 58 the metrical feet
involving the pivot and the post-pivot are measurable at between 1.5 and
2.2 fps, with a mean articulation rate of 1.9 fps.

Further observations It was pointed out above that typically hiatuses do
not occur between pre-pivots and pivots. Likewise, hiatuses do not occur
between pivots and post-pivots: there are no silences, or glottal or supra-glottal occlusions which might suggest self-repair (see Jasperson 1998, 2002). Rather, and as described above for the placement of the pivot relative to the pre-pivot, there is particularly close temporal proximity of the post-pivot talk to the pre-pivot, involving such features as continued phonation across the join (which is suggested by the continued periodicity in the speech-pressure waveform of Figure 8, between “bone” and “was”, and in the ability of the F_0 tracker being able to locate voiced frames across this join), and double articulations (as in Fragment 59).

The production of the pivot in particularly close temporal proximity creates the sense of the post-pivot being of a piece with the pivot, while also compressing the space in which a co-participant might be able to start up their talk.

The preceding sections have shown how a range of phonetic parameters are involved in marking the fittedness of (i) the pivot to the pre-pivot on the one hand, and (ii) the post-pivot to the pivot on the other. Features of phonetic design which are implicated here include features of pitch, loudness, articulation rate, and absence of hiatuses between the three components. It would seem that all of these features are deployed in ways which emphasise the fittedness and coherence of the [pre-pivot]+[pivot] TCU and the [pivot]+[post-pivot] TCU.

Summary of the phonetic design of pivots

This section provides a brief summary of the features of phonetic design which have been outlined up to this point.

Certain features of phonetic design have been shown to be deployed around pivot-ends in order to abrogate the transition relevance suggested by the possible syntactic and pragmatic completion which accompanies the end of the pivot. For instance, the pivot may not end with the kinds of pitch and durational characteristics associated with other designed-to-be and treated-as complete utterances; also, the post-pivot is produced without delay, following the pivot, and may result in assimilation of pivot-final articulations in anticipation of the post-pivot. One outcome of the analysis of phonetic de-
Chapter 6. Pivots

tails of these turns has been the demonstration of the appositeness of Sacks’ claim that

“[y]ou end up having done in effect two sentences, but there’s never been a chance for a hearer to find a first possible completion of the first.” (Sacks 1992b: 146; emphasis added)

Features of phonetic design, including pitch configuration, loudness characteristics, articulation rate, and other articulatory details have been shown to be implicated in marking out the fittedness of the pivot to the pre-pivot on the one hand, and of the post-pivot to the pivot on the other. These features of phonetic design — which result in an integration of the units, rather than a separation — facilitate the leftward-interpretation and rightward-interpretation of the pivot.

Having described and exemplified the main features of phonetic design associated with pivots and the turns which they built, one further issue requires discussion before moving on to outline some of the uses of pivots in interaction in Section 6.4.2. A pivot can be described as talk which (i) could, with regard to grammar, be the end of one TCU and the beginning of another, and (ii) is fitted to both the talk which preceded it and the talk which follows it through its phonetic design. The pivots which have been presented up to this point (“the bone”, Fragment 57; “what I’d like to have”, Fragment 58, and “shit”, Fragment 59) satisfy both of these criteria. Each of these cases satisfies the grammatical criteria in a particular way: in the contexts in which these pivots occur it is (i) not possible to interpret them as standalone TCUs and (ii) just as possible to interpret them as part of the talk which precedes it, as it is the talk which follows. So, for instance, in an utterance like “I love the bone was so beautiful” it would seem to be impossible to interpret “the bone” as its own TCU; also, it is possible to parse the utterance as both “I love the bone” and “the bone was so beautiful”.

However, there are cases in the data-set where, considering grammar to the exclusion of other parameters it might be possible to interpret the pivot as either the end of one TCU or the beginning of another. In certain cases, again with some other phonetic design, it might be possible to interpret the pivot as a separate TCU. Consider Fragment 60:
In Fragment 60 the candidate pivot ("inland", line 4) could plausibly form the end of one TCU ("it’s bad inland"), or the beginning of another ("inland it’s terrible"), but might not necessarily act as both a beginning and an end, i.e. talk could be structured as "[it’s bad] [inland it’s terrible]" or "[it’s bad inland] [it’s terrible]" (where square brackets enclose single TCUs). However, given the phonetic design of the talk in question, "inland" can legitimately be considered a pivot: the phonetic design of "inland" is consonant with that of the pivots in Fragments 57 to 59 described above, i.e.,

1. “inland” does not end with the phonetic characteristics which signal transition relevance (e.g. the rising-falling pitch on “inland” terminates 14 ST above the speaker’s baseline pitch, and 10.2 ST above the point at which “awful”, line 5, terminates and which marks the end of Emma’s next designed-to-be and treated-as complete utterance, which also exhibits rising-falling pitch: see Figure 9);

2. the pivot begins in the pitch trajectory of the pre-pivot, and the post-pivot begins in the pitch trajectory of the post-pivot;

3. there is matching of overall loudness and articulation rate across the components, and all voiced portions have modal voicing;

4. the alveolar closures at the end of the pre-pivot and pivot are released without delay into voicing for the vowels which begin the following components.

In short, the candidate pivot in Fragment 60 exhibits features of phonetic design which compare favourably with those identified on the basis of cases such as those presented in Fragments 57 to 59 above. The phonetic design,
Figure 9: Labelled speech-pressure waveforms and F_0 traces of parts of Fragment 60
along with the grammatical fittedness (if not dependence) of “inland” to both
the talk which precedes it and the talk which follows it facilitates the interpr-
etation of “inland” as both the end of one TCU and the beginning of another.

The next section, Section 6.4.2, provides an account of the uses of pivots
in interaction. In doing so, it draws on a collection consisting of both types
of pivot, i.e. the type exemplified by Fragment 60 (where the pivot is gram-
matically fitted to talk on either side of it, though not necessarily dependent
on it), and the type exemplified by Fragments 57 to 59 (where the pivot is
grammatically fitted to talk on either side of it, and is dependent on it). In
each case, a combination of the phonetic design of talk, and its grammatical
structure permit both leftwards and rightwards interpretation of the pivot. In
summary, for the purposes of this thesis pivots are identified on the basis of
both grammar and phonetic design.

6.4.2 Uses of pivots in interaction

Having set out the features of phonetic design routinely associated with piv-
ots and the turns which they are used to build, this section sets out to demon-
strate the uses to which pivots are put in talk-in-interaction.

It should be noted that there would not seem to be anything shared by
all cases in the data-set in terms of the exigencies dealt with by the pivots
other than the facilitating of turn-continuation past a point of possible syn-
tactic and pragmatic completion. For instance, it is not the case that all pivots
fend off projectable disagreement from a co-participant. Rather, the driving
force(s) behind turn-continuation via a pivot are best seen as particular to
each individual case, even though these driving forces may occur in multi-
ple instances.

However, in the current data-set pivots are used to build turns which
implement particular kinds of actions. In each case in the data-set — with the
exception of one instance, presented as Fragment 69 in Section 6.4.3 — the
[pre-pivot]+[pivot] TCU and/or the [pivot]+[post-pivot] TCU implements
one or more of the following actions:

1. assessing (42% of the data-set, n=14);

2. enquiring (24% of the data-set, n=8);
3. reporting (12% of the data-set, n=4).

The sections which follow are based around these categories; a further section provides an account of hybrid turns built with pivots (18% of the data-set, n=6), in which each TCU implements a different action of the kinds specified. It should be noted that a number of actions which have figured in this thesis (e.g. greeting, requesting, offering, and inviting), and which have been shown to be implemented by single turns, do not figure in this list. That is, in this data-set only certain actions are built with pivots. In the sections which follow, therefore, turns built by pivots which implement each of these actions (assessing, enquiring, and reporting) are discussed in turn. Instances of the phenomenon are presented which are representative of the data-set as a whole, and which give a flavour of the uses to which pivots are put aside from the straightforward observation that they facilitate turn-continuation.

Assessments

This section focuses on those cases in the data-set where the turn built with a pivot implements some kind of assessment. In these cases, typically both the [pre-pivot]+[pivot] TCU and the [pivot]+[post-pivot] TCU implement assessments. Fragments 61 and 62 (part of which was presented as Fragment 60 above) provide exemplars of turns built with pivots which implement assessments.

(61) Kamunsky.III-570s; PIV004

((talk has been about Rob, whom Alan has invited to a party which he is organising, but whom Maryanne --- who has also been invited to the party --- hardly knows))

1 Ala: he’ll get to know you (won’t[) ihh
2 Mry: [he seems like he’s really a nice person
3 Mry: he’s okay
4 (0.7)
5 Ala: (yeah/but) he’s okay
6 Mry: well he’s quiet but he’s okay
7 → Ala: yeah that’s what everybody tells me he’s really quiet
8 Mry: mnhm
9
10 Ala: mnhm
((Emma has called her sister, Lottie, on returning from her second home to her home on the coast, near where Lottie lives))

1 Lot: hello=
2 Emm: =are you answering the phone
3 (0.2)
4 Lot: ==hah .hhh I was just gonna call you ehh
5 [huh] huh
6 Emm: [I] just] got here
7 (0.5)
8 Lot: really
9 Emm: [oh it’s been so foggy we didn’t come down
10 oh it’s so foggy Lottie all our way (off/all) our
11 way it’s terrible
12 (0.4)
13 Lot: no kidding
14 Emm: yeah we came down Rosemead real slow
15 (0.8)
16 Emm: .hh oh [yeah they w]arned you to stay away
17 [(mm::)]
18 Emm: from them (0.4) five ten miles on the freeways
19 last night you know so
20 (0.2)
21 Lot: yeah I know it but you know it wasn’t (b)e- it
22 wasn’t bad here it all
23 Emm: that’s what Gladys just tells me but it’s bad
24 → [inland] it’s terrible you only have about a block
25 visibility it’s just (.) awful
26 (0.7)
27 Lot: yeah

In Fragment 61 the continuation which is facilitated by the pivot works to resolve an ambiguity in the [pre-pivot]+[pivot] talk. In her talk at line 8, Maryanne offers an assessment of Rob which reciprocates that made by Alan in the previous turn (“Well he’s quiet but he’s okay”, line 7). Maryanne’s assessment comes to a point of possible syntactic and pragmatic completion at the end of “yeah that’s what everybody tells me”. Although it is possibly complete at this point, it is also ambiguous in terms of what exactly Maryanne is responding to with her assessment: she could be either responding to Alan’s assessment of Rob as quiet, or as okay. Indeed, given that Maryanne’s assessment immediately follows Alan’s assessment of Rob as “okay”, it might be expected that Alan would treat Maryanne’s “yeah that’s what everybody tells me” as agreeing with that part of his assessment, rather than with Rob being quiet (this would be consonant with Sacks’
observations regarding “contiguity” in conversation; Sacks 1987). However, Maryanne uses a pivot in order to produce talk which works to resolve this possible ambiguity, and make it clear that she is responding to Alan’s assessment of Rob as quiet. Maryanne uses the final stages of her possibly complete “that’s what everybody tells me” to get into a new TCU — “everybody tells me he’s really quiet” — which resolves this ambiguity, making it clear that she is offering explicit agreement with the first part of Alan’s assessment (“he’s quiet”), rather than the second. In this way, then, the pivot can be seen to be used to pre-empt a possible misunderstanding of Maryanne’s talk by Alan, a misunderstanding which may be considered all the more likely given that the relationship between Maryanne’s assessment and the talk which precedes it doesn’t accord with the kinds of preference for contiguity in conversation recorded by Sacks (1987).

Fragment 62 also shows a continuation of a turn which implements an assessment, though the motivation for the continuation would seem to be rather different from that in Fragment 61. Fragment 62 is taken from the beginning of a telephone call between Emma and her sister, Lottie. Near the beginning of the call, Emma provides an account for why she hasn’t called Lottie sooner: she has only just arrived at home, due to adverse weather conditions.\footnote{It seems legitimate to consider Emma’s talk as forming an account rather than simply a report as it is triggered by Lottie’s “I was just going to call you” (line 4): presumably Lottie was going to call Emma because Emma had not called her first.} Despite Emma’s claims concerning the nature of the weather, Lottie’s responses to Emma’s talk would seem to be rather limited in terms of aligning with Emma’s plight. For instance, Emma’s initial “I just got here” (line 6) is greeted with silence and a go-ahead (line 7 to 8), further silence following “we came down Rosemead real slow” (line 14), and a news receipt in overlap (line 17). Following a further short silence (line 20) comes further mitigated agreement from Lottie: “yeah I know it but you know it wasn’t b- it wasn’t bad here it all” (lines 21 to 22). One possible interpretation of Lottie’s turn is not only as a mitigated agreement, but also as a complaint: by emphasising that the weather isn’t bad where she is (which was Emma’s destination) there may be a suggestion that had Emma made more of an effort to overcome the difficulties with the weather at her other home, then
the remainder of the journey would have been plain sailing. Emma responds first with an agreement of sorts, invoking the view of a third party (“that’s what Gladys just tells me”, line 23) — before restating the weather conditions where she has been (“but it’s bad inland”, line 24). She then uses the end part of this TCU (“inland”) as the first part of a next TCU: “inland it’s terrible”. In doing this, Emma is getting herself the space in which to do an upgrade on her first assessment, shifting her description of the weather conditions from “bad” to “terrible”. The significance of this continuation into the upgrade is that it strengthens her case for not having begun her journey to the coast, and is offered in the face of the implication from Lottie that at least the final part of the journey would have caused Emma no problems at all. That is, irrespective of the weather conditions at her destination, the conditions at her point of departure were sufficiently hazardous to warrant the postponement of the journey.

It would seem, therefore, that the driving forces behind the continuations in the target turns of Fragments 61 and 62 are rather different. In Fragment 61 the continuation is effected in order to prevent misunderstanding, while in Fragment 62 it works to prevent misalignment.

Fragment 63 includes a third case of a pivot building a turn which implements an assessment, though which seems to be different from the turns built with pivots in Fragment 61 and 62.

(63) Holt.U.88.2.2-660s; PIV033

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kev: you know certainly (.) last time I saw him uh for</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>his (0.4) after his retirement he seems to have</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>uh (1.0) uh (0.4) be benefiting (0.3) benefitting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>from the uh (0.2) the experienc[e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Les: that’s right I’m sure it’s a weight off his mind</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>→ I’m sure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(0.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Kev: still</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>(0.7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Les: mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Kev: [(times) wish I’d (0.3) uh (0.3) taken up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>teaching as uh (0.3) Claydon said I ought to have</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>done</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Following Kevin’s assessment of Ben’s welfare (lines 1 to 4), Leslie offers agreement (“yes that’s right”, line 6) and then offers her own assessment.
On reaching the first point of possible syntactic and pragmatic completion in the course of that assessment (i.e. at the end of “I’m sure it’s a weight off his mind”) Leslie elects to continue her talk, electing to do so by reusing the end part of this talk as the start of more talk, creating “it’s a weight off his mind I’m sure”. This turn is the only instance in the current data-set which has the same lexical items (“I’m sure”) as both the pre-pivot and post-pivot talk. As it is the only case of matched pre-pivot and post-pivot talk in the data-set, any analysis of its function will be necessarily speculative. However, it is possible to make certain relevant observations by setting this case against other analyses of other phenomena. Two studies conducted within the CA framework — Clift (2001) and Heritage & Raymond (ms) — have shown that the differential placement of identical lexical items or strings within a TCU is responsive to different interactional exigencies: Clift (2001) found that placement of “actually” initially or finally in a TCU had different uses and consequences in talk-in-interaction; Heritage & Raymond (ms), working with a collection of second assessments found (amongst other things) that by placing an agreement token (e.g. “yes”) after a confirmation upgrades the right to assess some particular referent. Given, then, that (i) the placement of identical lexical items at different points in a turn at talk may be consequential for the interaction and (ii) that by using “it’s a weight off his mind” as a pivot with “I’m sure” as both the pre-pivot and the post-pivot, the talk in Fragment 63 may indicate that pivots can be used not only to continue a turn at talk past a point of possible syntactic and pragmatic completion, but also to re-place a bit of talk (in this case “I’m sure”) elsewhere in a TCU.

Inspection of the turns built with pivots in Fragments 61 to 63 immediately supports the notion that pivots are used to facilitate talk past a point of possible syntactic and pragmatic completion for a range of reasons, even when the base action-type of the turns being built is consistent across the instances (i.e. they are all assessments). This would suggest that the most felicitous way to handle continuations through the use of a pivot is on a case-by-case basis. Indeed, this is how the following sections will proceed, dealing in turn with enquiries, reportings, and hybrid turns built with pivots.

8 An instance of a second assessment can be found in line 4 of Fragment 61, though in that particular case the agreement token (“yeah”) precedes the confirmation (“he’s okay”).
Enquiries

This section deals with some of the cases in the data-set in which the turn built with the pivot is implementing an enquiry. Fragments 64 and 65 exemplify a turn-organisation in which the pivot facilitates a shift from an enquiry into a candidate answer. In the analysis which follows an attempt is made to unpick the significance of the continuations for the interaction.

(64) Heritage.V.2.6-133s; PIV009

((Ilene --- the soon-to-be Lady Mayor --- is arranging a party))

1 Ile: it will be the last time for a year because you
2 have to be apolitical when you’re a mayor
3 (0.3)
4 Joy: yeah oh I see you don’t[uh
5 Ile: [no you’re not uh eh .hh
6 anything I’m I’ve got to resign from the eh .hh
7 Conservative Women’s Association the committee
8 (0.2)
9 → Joy: why is that because you’ve got tuh be (ree uh)=
10 Ile: =we mustn’t be political
11 (0.4)
12 Joy: oh I see no of course you mustn’t
13 Ile: [you’ve got to be
14 all (.) pa[rties
15 Joy: [open min[ded
16 Ile: [yeah

(65) TG-489s; PIV029

1 Ava: you know it jus’ doesn’ seem worth it hh
2 Bee: m .hhh what about (0.5) uh:: (0.8) oh you go f::-
3 → you how many days you go five days a week
4 ri[ght]
5 Ava: [ye]ah
6 Bee: oh (god) .hhh
7 Ava: .hh
8 Bee: so .hh (then/and) you’re only (l-/w-) in school
9 late on Wednesdays then
10 Ava: that’s all

In Fragment 64 the pivot (“is that”) is used to continue into a candidate answer to the first pair part enquiry formed by the [pre-pivot]+[pivot] (“why is that”). The continuation is also a pre-emption of possible problems of alignment which could ensue from her enquiry. Joy has called Ilene to find out what might constitute appropriate dress for a house-party which she (Ilene) is organising. Referring to the throwing of the party, Ilene announces that
“it will be the last time for a year because you have to be apolitical when you’re a mayor” (lines 1 to 2), which she follows up by saying that she will have to resign from the committee of the Conservative Women’s Association (lines 5 to 7). In response, Joy issues the syntactically and pragmatically well-formed enquiry “why is that” (line 9), which makes relevant an answer from Ilene. However, in her preceding talk, Ilene has made the reason for having to resign pretty clear: she must be apolitical. This makes Joy’s enquiry an inapposite one, and, moreover, may suggest a lack of attentiveness on her part to what Ilene has been saying. By recycling the end of her enquiry as the first part of a follow-up which demonstrates some understanding of Ilene’s situation, she manages to side-step the possibility of Ilene (i) coming in at the end of Joy’s enquiry and (ii) responding in a way which may suggest misalignment arising from Joy’s inapposite enquiry.

In Fragment 65 a pivot is also used in order to move from an enquiry into a candidate answer, though in this particular case the motivation for (i) preventing a co-participant starting up their talk following the enquiry and (ii) constructing that particular [pivot]+[post-pivot] TCU is arguably less clear than in Fragment 64. The fragment is taken from a call in which two female friends are “catching up” after a break in their communication (Schegloff 1996: 57). Bee issues the possibly complete enquiry “how many days you go” (line 3), referring to Ava’s attendance at college. However, rather than leave space in which Ava can provide the relevant response, Bee uses the end of this TCU as a pivot into a next TCU which incorporates a candidate answer to the enquiry (“you go five days a week right”, line 3 to 4). Although the motivations for the turn continuation facilitated by the pivot in Fragment 65 may not be quite as clear as in Fragment 64, a plausible account of this case can be offered by appealing to notions of participant alignment, as in Fragment 64. By shifting from the enquiry into a candidate response in Fragment 65 Ava claims a particular kind of knowledge about her co-participant’s life: that Bee goes to college five days a week. Analogous to the way in which SPPs were shown to be postponed in order to ensure that some particular bit of talk (i.e. the postponing-TCU) got to be produced (Chapter 5), these pivots are being postponed in order to ensure that some particular bit of talk (i.e. the postponing-TCU) got to be produced (Chapter 5), these pivots are being

9Indeed, it may be the case that, like Joy in Fragment 64, Ava has access to the information required to respond to the enquiries from a previous interaction.
used to ensure that some bit of talk (i.e. the [pivot]+[post-pivot]) gets said by making the end of one TCU the start of the next, abrogating the point for which a co-participant will be monitoring in order to launch a responsive action.

Reportings

This section deals with some of the cases in the data-set in which the turn built with the pivot forms part of a **REPORTING**. For the purposes of this investigation, a turn can be considered a reporting if its main business is the imparting of information as fact, rather than opinion, and where that imparting of information is not in service of some other action (e.g. complaining, requesting, offering).

Fragments 66 and 67 (part of which was presented as Fragment 56 above) each provide an instance of a reporting being built with a pivot.

(66) NB.IV.10-1298s; PIV010

1 Lot: you know I won’t have the Christmas
2 [p a r t y]
3 Emm: [well you know] that’s Bud’s fault
4 (0.2)
5 Lot: no:: it isn’t uh that’s juh uh duh I’ll (.) I’ll
6 → get the (.) Christmas present [next monday] I’ll
7 drive out there and give them to Agnes
8 (1.9)
9 Lot: en: eh you know
10 (.)
11 Lot: I’ll tell her I’m going away or something=
12 Emm: =mm
13 Lot: ((sniff))
14 (.)
15 Lot: [so]
16 Emm: [(okajy]
17 (0.3)
18 Lot: I’m [n o t gonna]
19 Emm: [well don’t be] broken hearted
20 (0.4)
21 Emm: I’d just as soon forget the whole thing myself
22 Lot: yeah

(67) SBL.2.3-30s; PIV030

1 Jo: we were in Northern California up (0.3) wehhh
2 (0.6) way up in the mountains too
3 (0.3)
Chapter 6. Pivots

Fragment 66 is taken from a call in which Lottie’s cancellation of her Christmas party is discussed: Lottie is now in the process of making alternative arrangements for the delivery of a Christmas present. By using a pivot (“next Monday”, line 6) Lottie gets from a TCU concerned with the timing of her buying the Christmas present (“I’ll get the (.) Christmas present next Monday”) into talk about the delivery of the present (“next Monday I’ll drive out there and give them to Agnes”).

Fragment 67 is taken from a call which took place on the same afternoon as Jo returned from her vacation. Immediately prior to Fragment 67, Claire has asked her where she went on her vacation. Following Jo’s announcement (“we were in Northern California up (0.3) wehhh (0.6) way up in the mountains too”, lines 1 to 2), Claire — rather than eliciting further information regarding Jo’s trip, which she has already described twice as “wonderful” — offers a reciprocal reporting. On reaching the first point of possible syntactic and pragmatic completion in her talk (“we went up there oh:: about thr-.hhhh I’d say about three weeks ago”, lines 4 to 5) Claire recycles the end part of this TCU to continue her own reporting (“I’d say about three weeks ago we was up at Mariposa”, lines 5 to 6). It would seem, given that Jo has only just returned from her trip, that she (Jo) would have primary rights to provide an account or description of her trip. However, Claire does not collaborate in this, electing to launch her own reporting rather than eliciting information from Jo. It is perhaps this “right” of Jo’s that motivates the deployment of the pivot in Claire’s turn: she may be having to work particularly hard at the end of her first TCU (“we went up there oh:: about thr-.hhhh I’d say about three weeks ago”) in order to secure the space in which to continue, in the face of Jo’s enhanced rights to tell a story. In this case, that work is done by
the pivot, to ensure that Claire’s reporting gets to be continued past its first point of possible syntactic and pragmatic completion.

Hybrid turns built with pivots

Up to this point, the turns built with pivots have been engaged in either assessing, enquiring, or reporting. However, there are cases in the data-set where more than one of these actions is being implemented by a single turn built with a pivot. All but one of these HYBRID turns consist of a reporting followed by an assessment: an example is shown in Fragment 68. Nancy has been describing to Emma an eligible retired army officer who she met at a party the previous night.

(68) NB.II.4.10-997s; PIV020

Nan: he had come down to the uh (.) Reuben E. Lee:
2 .hhhh and ah (.) then as a retired uh officer in
3 the (0.2) ah marine corps he has un (.) he was
4 showing it to me he has a-. hh a pass which
5 allows him for ever and a day .hhhh to (.) go to
6 the officer’s clubs et El Toro
7 (.)
8 Nan: o[r Ca:mp Pendle]ton (.) and they have lovely
9 Emm: [m m :]
10 Nan: dinner dances and things like that you
11 kn[ow .hhhh
12 Emm: [wonderfu[1
13 Nan: [and he said I’ve never: uh:m (0.3) he
14 said I really haven’t taken advantage of it
15 [.hhh
16 Emm: [mm h|m
17 Nan: [an Helen had told me about this bitchy wife
18 that he had had for so long and apparently she
19 always made such a scene
20 → every time they went somewhere I guess she drank
21 too much [.hhhh
22 Emm: [m m : [h m:
23 Nan: [an apparently he just
24 simply hasn’t been interested
25 [in]
26 Emm: [mm] hm[:
27 Nan: [doing
28 (.)
29 Nan: a lot of [dating and]
30 Emm: [.mhhhhhh]
31 Nan: he said now I might have a:– a reason to
32 Emm: hhmm[hmmh
Following her reporting of the man claiming not to have used his free pass (“he said I’ve never: uh:m (0.3) he said I really haven’t taken advantage of it”, lines 13 to 14), Nancy reports part of a conversation she had with another friend — Helen — about the ex-wife of the man (“Helen had told me about this bitchy wife that he had had for so long and apparently she always made such a scene every time they went somewhere”). Rather than providing space at this point of possible syntactic and pragmatic completion for Emma to assess the reporting, Nancy uses the end of this TCU (“every time they went somewhere”) as a pivot into her own assessment: “every time they went somewhere I guess she drank too much” (lines 20 to 21). In continuing past this point of possible syntactic and pragmatic completion, Nancy acquires for herself the space in which she can make an assessment of the man’s wife (previously she has only been reporting the assessment of the wife by a third party), along with a claim as to her inability to control her consumption of alcohol to the point that it may have been the reason that he didn’t get to go anywhere. Crucially, the pivot allows Nancy to circumvent the possibility of Emma derailing Nancy’s shift from reporting to assessing, for instance by Emma making her own assessment of how the wife “always made such a scene every time they went somewhere”.

Summary of the uses of pivots in interaction

This section has provided a flavour of the kinds of uses to which pivots are put in the current data-set. It is appropriate at this point, and before moving on to describe some of their features of phonetic design in Section 6.4.1, to summarise some of the main points of the preceding descriptions:

1. Pivots are used to facilitate the continuation of talk past a point of possible syntactic and pragmatic completion.

2. The precise motivations for continuing past that point of possible syntactic and pragmatic completion — and the extent to which those motivations are visible to the analyst — vary. It would not seem to be the
case that the continuation is effected for the same reason (e.g. to pre-
empt problems of understanding, or of alignment) in all cases. How-
ever, in many cases, it is possible to identify a particular interactional
exigency dealt with by the pivot and the continuation it facilitates.

3. In the current data-set, pivots cluster around particular kinds of activ-
ity (but see Fragment 69 in Section 6.4.3). These activities are assess-
ments, enquiries, and reportings, and certain combinations of these ac-
tions (hybrids).

Section 6.4.3 presents one further case of a turn built with a pivot, which has
particular relevance to the discussion of the function of pivots in interaction.

6.4.3 Extending the analysis

This section provides discussion of a case which stands out from the others
in the data-set. It stands out in that the target turn — which is built with a
pivot — and the phonetic organisation of that turn are consonant with those
patterns set out in Section 6.4.1 above, yet the organisation of the interac-
tion seems to be quite different from those patterns of use outlined in Se-
cion 6.4.2. Although Fragment 69 represents the only case of this kind in the
data-set, it deserves some attention, particularly as it may inform future anal-
yses of pivots in talk-in-interaction.

Fragment 69 is taken from a telephone call between two female friends,
Jenny and Ida. Ida has called Jenny to tell her that her (Ida’s) new furniture
has arrived at a local department store. The target turn, produced by Ida, is
shown in lines 7 and 9.

(69) Rahman.B.1.12-022s; PIV008

1 Ida: I’ve just rung to te- eh tell you (0.3) uh the
2 things have arrived from Barker and
3 Stonehou[se
4 Jen: [oh::::
5 (.)
6 Jen: o[hh can I come round [hh
7 Ida: [and] [ye[s please [that’s w]hat=
8 Jen: [ha ha [a:h]
9 → Ida: =I want you to come round
10 Jen: I’m just having tea now [um:
It is worth considering some of the work being done with the pivot in this case. The pivot delivers Ida very precisely into the clear following Jenny’s laughter (line 8), allowing the production of a complete TCU in the clear. A possible explanation for this case, then, is that pivots are available as a practice for the resolution of overlap (cf. Schegloff 1987b), as well as for the construction of the kinds of turns described in Section 6.4.2.

However, resolving overlap is not the only work done by the pivot: the pivot also allows Ida to produce talk which is plausibly some version of that talk to which “the things have arrived at Barker and Stonehouse” was heading, but which was derailed by Jenny’s FPP enquiry: “can I come round” (line 6). (Ida’s aborted start-up at line 7, coincident with Jenny’s own start-up, supports the view that Ida may have talk still to produce.) Jenny’s FPP having been dealt with (“yes please”, line 7), Ida is in a position now to move away from the adjacency pair, and she does so with a pivot, getting into talk which stands alone and which is not contingent on Jenny’s FPP having been issued: “I want you to come round” (line 9).\(^{10}\) In moving away from the adjacency pair in this way, Ida comes off as active in building a social bond with Jenny: in the [pivot]+[post-pivot] TCU she displays her desire for Jenny to visit, irrespective of her (Jenny’s) prior request to do so.

It would seem, therefore, that there are two motivating forces for the deployment of this pivot: first, it enables the resolution of overlap; second, it provides for the building of a particular social bond in the face of a trajectory having been curtailed.\(^{11}\) These motivating forces make the pivot in Fragment 69, and the turn which it builds, quite different from those cases described previously in this chapter. Although this is the only such case in the data set, it does suggest that pivots may inhabit more kinds of sequence, and implement more kinds of action, than those explored in this chapter.

\(^{10}\)Note that Ida does recycle “come round” from Jenny’s talk which shows attendance to Jenny’s talk, while simultaneously moving away from it in terms of sequential organisation.

\(^{11}\)These motivating forces are not mutually exclusive.
The implication of Fragment 69 for future work on pivots is that while there may be tendencies for pivots to cluster around certain activity types (assessments, enquiries, and reportings), analysts should remain sensitive to the possibility that participants may deploy them while engaged in a variety of kinds of actions. That is, pivots may represent a practice which is available for more ad hoc deployment than the current data-set suggests, and may be available to allow continuation of a range of action types beyond points of possible syntactic and pragmatic completion.

6.5 Summary and implications

This chapter has provided an account of the phonetic design of pivots, and the turns which they build, and particularly how phonetics fits the components of those turns (i.e. the pre-pivot, the pivot, and the post-pivots) together to make coherent composites. An account has also been provided of the uses to which pivots are put in everyday conversation.

Using the research questions set out in Section 6.2 as a reference point, the findings can be summarised as follows:

1. A range of features of phonetic design are deployed in systematic ways, including features of pitch, loudness, duration, and certain articulatory details. More specifically:

 (a) The signalling of transition relevance at the pivot-ends is avoided by (i) refraining from the deployment of final pitch configurations which characterise other designed-to-be and treated-as complete utterances, (ii) avoiding slowing down towards the end of the pivot, and (iii) producing the post-pivot talk immediately on completion of the pivot (in which continued phonation and double articulations are implicated).

 (b) Pitch, loudness, and articulation rate are all implicated in facilitating both leftward and rightward interpretation of the pivot, i.e. these features are deployed such that they suggest a fittedness of the pivot to the pre-pivot, and of the post-pivot to the pivot.
2. Pivots have been shown to be deployed with greatest frequency in turns which are engaged in at least one of the following: assessing, enquiring, reporting. However, it would seem that these are not the only kinds of turns in which pivots occur.

It has also been shown that pivot-ends do not exhibit the phonetic features of finality apparent at the ends of comparable, but treated-as-complete, utterances: for instance, pivot-ends may differ from those treated-as-complete utterances in terms of pitch configuration and duration.

As with other exploratory studies in this thesis, one limitation is the rather small data-set. However, the data-set would seem to be sufficiently sizeable to expect that the patterns identified within it would be reflected in other, larger data-sets of British and American English, and perhaps other languages. This said, the case presented in Section 6.4.3 makes the tantalising suggestion that pivots may perform a wider range of functions in interaction than the other cases in the data-set would suggest. Clearly, further instances of the phenomenon would be required to explore whether pivots occur with greater frequency in the kinds of actions identified in Section 6.4.2, or whether they are a more general practice for continuing a turn past a point of possible syntactic and pragmatic completion.

In conclusion, and by way of reflection upon the study of pivots reported on in this chapter, four observations can be made. First, the descriptions contained in this chapter can be usefully compared with practices for turn continuation described elsewhere, in order to better understand the role of phonetic resources in those practices. Abrupt-joins have been shown to emphasise the multi-unit-ness of turns which they build through step-ups in pitch and loudness (Local & Walker 2004). Abrupt-joins also involve temporal compression of the syllable which leads up to the point of possible syntactic and pragmatic completion, in order to pre-empt the starting up of talk by a co-participant. It has been shown that a quite different organisation of phonetic resources is associated with pivots. For instance, pitch, loudness, and articulation rate have been shown to emphasise the fittedness and integration of components of the turns; the absence of dramatic temporal compression of the pivot-final syllables might be taken as claiming that the ongoing speaker’s continuation past a point of possible syntactic and pragmatic com-
pletion is a legitimate one, and need not be rushed into in the fashion of an abrupt-join. With regard to increments, the phonetic parameters at work in marking fittedness of an increment to its host TCU are much the same as those implicated in marking the fittedness of the components of turns built with pivots (see especially Walker 2004 on this aspect of increments).

Second, the analytic treatment of the phonetic design of talk is treated as a criterial feature of the practice, emphasising that a range of resources (including phonetics and grammar) can usefully be taken into account in conducting analysis (this is also exemplified by Couper-Kuhlen 2003; Local & Walker 2004; Ogden et al. 2004). It seems plausible that there might be occasions where some stretch of talk may appear (e.g. on a transcript) to involve a pivot, but on encountering the audio it becomes obvious — as a result of the phonetic design of the talk — that there is in fact no pivot. However, if both phonetic and grammatical resources are taken seriously at all stages of analysis (i) such errors can be avoided, and (ii) the analyst can deal with features of linguistic design, be they grammatical or phonetic, in a way which reflects the simultaneity with which they were deployed by the participants.

Third, the identification of a practice with which speakers produce talk which has simultaneous leftwards and rightwards interpretation raises certain issues for mainstream linguistics. For instance, analyst-driven grammaticality judgements might deem structures involving pivots ungrammatical. However, the practice has been shown to be available for participants to deploy in conversation, and they would seem to cause no difficulty in terms of the ability of co-participants to understand them (e.g. there are no cases of other-initiated repair — e.g. “what?” “huh?” “sorry?” — following turns built with pivots). This supports a view of grammaticality (as commonly conceived) as only encompassing a subset of those structures participants engaged in conversation can deploy and interpret.

Fourth, given the range of phonetic parameters implicated in this practice (pitch, loudness, articulation rate, and certain articulatory features), it emphasises a point made elsewhere within LCA: that a separation of phonetic parameters into ‘segmental’ and ‘suprasegmental’ domains may be an essentially arbitrary one, and not detectable in the deployment of phonetic
resources by participants engaged in talk-in-interaction (see also Curl 2004; Local & Walker 2004).

Up to this point, chapters have been devoted to the analysis of a range of aspects of conversation, and particularly to investigations revolving around turn endings, beginnings and continuations. Exploratory studies of the following have been reported on: turn endings (Chapter 3), request-response beginnings (Chapter 4), postponed-SPPs (Chapter 5), and pivots (this chapter). The next, and final, chapter draws some conclusions from those studies.
Chapter 7

Conclusions

A significant part of this thesis has been concerned with investigating possible relationships between the phonetic design of talk (and variability in that design), and the function of that talk in interaction. Throughout, the phonetic design of talk and its function in interaction has turned out to be related in some way. One upshot of this is a more complete understanding of one factor — interaction — in organising phonetic variability, and of how phonetic variability can be shown to be consequential for the development of the interaction. It has also been shown that — as far as can be discerned in these investigations — certain kinds of variability in phonetic design which might otherwise be considered to be systematic and meaningful are not consequential in those ways (e.g. the occurrence of final rising pitch, and final falling pitch at the end of FPPs). More importantly, all of these findings have been warranted through the empirical analysis of talk-in-interaction which was conducted with as few prejudices as possible, and with a view to providing a more complete understanding of how participants deploy linguistic resources for their own interactional ends.

It would be foolhardy not to address some limitations of the investigations presented in this thesis. Two such limitations are picked up for discussion. First, it is possible that certain factors which may have a bearing on the production and organisation of talk-in-interaction (e.g. state of mind, attitude, and certain social factors) are not readily identifiable within the (L)CA methodology. On balance, focusing only on what is observable in the inter-
action, and shunning introspection and pseudo-psychology, leads to a much more rigorous analytic account that is based more firmly in details which are available, in the first instance, to the interactants. However, it remains tempting to wonder about the influence of factors which may not seem to be directly observable at first. For instance, a notion as slippery as “attitude” might account for the variability observed in Chapter 3. Such notions may repay closer attention within the LCA framework.

A second limitation of the investigations has been the relatively small, and at times the very small, number of instances being dealt with. The methodological approach taken is qualitative, and therefore well-suited to handling single strips of talk-in-interaction which is important for reasons discussed elsewhere in this thesis (see e.g. Section 2.2.3). However, more often than not a larger data-set will provide an account which is more compelling than an account based on a smaller one. To take an example from this thesis: in the pivots data-set, pivots were shown to cluster around particular kinds of action (i.e. assessments, enquiries, and reportings). However, there would not seem to be any particularly good reason for the pivots to cluster around those particular actions, as these actions form a rather disparate group. Furthermore, in one case in the data-set a pivot is used to build a turn which does not implement any of these actions (see Fragment 69). A larger data-set might reveal that pivots are deployed in a wider variety of contexts than the rather small data-set for the current investigation would seem to suggest.

On a rather general level, the investigations in this thesis contribute to our understanding of how people manage everyday conversation. For instance, the resources which speakers deploy and respond to in the on-line parsing of talk have been investigated. Furthermore, this has not been investigated on the basis of talk which is produced for some experimental purpose, but rather on the basis of talk which is produced in order to implement social actions, and to enter into communication with other members of a speech community. The investigations reported on in this thesis have also led to the explication of postponed-SPPs and pivots — two practices about which little appears to have been known prior to those investigations — going some way towards documenting the role of features of phonetic design in those prac-
practices, and their usage and distribution in conversation. Those studies suggest that in addition to examining issues such as turn taking and other sequential matters, adopting the LCA methodology can yield significant insights into the practices which speakers have in their interactional armoury (see also the practices explicated in Curl et al. 2004 and Local & Walker 2004).

Furthermore, the investigations have shown how linguistics and CA can each be used to inform the other. With regard to linguistics, some of the ways in which linguistic resources are used in the management of talk-in-interaction have been demonstrated, while striving to demonstrate the relevance of the resources and practices to the participants rather than to analysts. The studies have also demonstrated how comparability can be established within data-sets in new ways. For instance, sustained attention has been paid to sequence organisation and the action being implemented by talk in constructing data-sets for this thesis. One benefit of constructing data-sets in this way is that it helps to hold those features constant, creating a stronger position from which to account for what is observed. With regard to CA, it has been shown that techniques developed within linguistics have a relevance to the study of talk-in-interaction; furthermore, this thesis has demonstrated how those techniques might be applied.

This thesis has demonstrated the application of Linguistics-informed Conversation Analysis to the quest to understand more fully the linguistic competences of members of a speech community. The methodological approach combines analysis of linguistic resources, informed by techniques developed within linguistics, with analysis of interaction, grounded in the principles and practices of Conversation Analysis.
Appendix A

Transcription conventions

The following conventions are employed in orthographic transcriptions of talk-in-interaction.

→ indicates the location of talk of particular relevance to the discussion
[] aligned square brackets mark the onset of overlapping talk
(.) “micropause” (pause of less than 0.1 s)
= “latched” talk, i.e. talk starts up in especially close temporal proximity to the end of the previous talk
: sustension of sound; the more colons the longer the sound
(0 . 8) pause, measured in seconds
. h outbreath, each “h” representing 0.1 s
. h inbreath, each “h” representing 0.1 s
. t ingressive release of oral occlusion (in this case, at the alveolar place of articulation)
! t the exclamation mark is used to indicate the occurrence of a sound usually referred to as a click, i.e. a sound involving velaric suction; a following p, t, or k indicates bilabial, alveolar, and velar place of articulation respectively; two characters following ! indicates simultaneous articulation
Appendix A. Transcription conventions

- **goo-** abrupt oral or glottal cut-off
- **()** unintelligible talk; the space between the parentheses indicates the duration of the unintelligible talk
- **(yes/is)** uncertain hearing
- **(())** description rather than transcription e.g. **((laugh))**
- **:::** indicates omitted talk, usually accompanied by a description of the length and nature of the talk which is omitted
- **she** laughter coincident with production of other talk
- **M.I.T.** upper case characters separated by a period and a space represent the spelling out of words and abbreviations (M.I.T. might be rendered in an IPA transcription as [ɛmailʰɪ])
- **I, Skip** upper case is used to indicate the occurrence of first person singular pronouns and proper nouns
- **p--** quiet speech (piano)
- **pp--** very quiet speech (pianissimo)
- **f--** loud speech (forte)
- **ff--** very loud speech (fortissimo)
- **all--** fast speech (allegro)
- **rall--** speech which is slowing down (rallentando)
- **l--** slow speech (lento)

Where IPA transcriptions are provided, these are prepared in accordance with the conventions of the International Phonetic Association (International Phonetic Association 1999).

When data fragments are presented in the text, in addition to being numbered, each fragment has a code at its beginning, e.g. NB.IV.1-29s. These codes are made up of three components, each of which is underlined and labelled in the example below.

```
NB.IV.1-29s
```

corpus code call code time through call

The **CORPUS CODE** indicates the corpus from which the fragment was taken (see Appendix C); the **CALL CODE** refers to the particular call in the corpus from which the call was taken; **TIME THROUGH CALL** indicates the time from
Appendix A. Transcription conventions

the start of the recording at which the fragment begins. Where characters fol-
low a semicolon (e.g. PIV017) these indicate the label given to that fragment
in its particular data set (in the case of PIV017, the set of pivots).
Appendix B

Segmentation conventions

The conventions below were employed in measuring durations, and are based on the more extensive descriptions in Olive, Greenwood & Coleman (1993) and Sotillo (1997: 123–132). For convenience, the sounds are grouped into classes. Measurements were made on the basis of visual inspection of the speech-pressure waveform and wide-band spectrogram, while listening to the audio playback of relevant portions; however, the actual measures were taken only from the speech-pressure waveform. The descriptions below only give details of the onset of sounds and not their offsets. The offset was taken to be either (a) the onset of a following sound under the criteria set out below or (b) the return of the speech pressure waveform to a state of equilibrium, representing the end of phonatory and articulatory activity.

<table>
<thead>
<tr>
<th>Plosives</th>
<th>Diminution in energy of F_2 and higher frequencies; in the case of full closure not being reached, frication indicated by excitation at higher frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fricatives</td>
<td>Frication indicated by excitation at higher frequencies</td>
</tr>
<tr>
<td>Nasals</td>
<td>Diminution of energy above 500 Hz</td>
</tr>
<tr>
<td>Approximants</td>
<td>Formant transition into $[w, 1, j]$; diminution of energy above F_2 for $[l]$</td>
</tr>
</tbody>
</table>
Appendix B. Segmentation conventions

vowels clear formant structure
Appendix C

Description of data corpora

The table below provides an overview of the data corpora from which Fragments presented in this thesis have been taken, where such information is available. The approximate length of each corpus is also provided. All corpora comprises audio recordings of telephone calls, unless otherwise stated.

<table>
<thead>
<tr>
<th>Corpus</th>
<th>Length</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heritage</td>
<td>2 hours</td>
<td>calls made to/from the home of an English family in the early 1980s</td>
</tr>
<tr>
<td>Holt</td>
<td>7.5 hours</td>
<td>calls made to/from the home of an English family in the second half of the 1980s</td>
</tr>
<tr>
<td>LabTalk</td>
<td>8 hours</td>
<td>audio recordings of face-to-face interactions between pairs of friends in a recording studio at the University of York; recorded in 2000 and 2001</td>
</tr>
<tr>
<td>MTRAC</td>
<td>1.5 hours</td>
<td>calls made to/from the home of an American woman in the 1970s</td>
</tr>
<tr>
<td>NB</td>
<td>3 hours</td>
<td>calls made to/from the homes of various women living in California in the 1960s</td>
</tr>
</tbody>
</table>
Appendix C. Description of data corpora

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Duration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>4.5 hours</td>
<td>calls to a late-night radio phone-in show ("Nightowls") broadcast in the North-East of England; recorded on the nights of Wednesday 11th and Thursday 12th April, 2001</td>
</tr>
<tr>
<td>Rahman</td>
<td>1.5 hours</td>
<td>calls made to/from the home of an English family in the late 1970s</td>
</tr>
<tr>
<td>SBL</td>
<td>3 hours</td>
<td>calls made between a number of women in California in the 1960s</td>
</tr>
</tbody>
</table>
Appendix D

Text conventions

“ ” used to mark quotations from either data or the literature, unless the quotation is set off in its own text block

emphasis used when special emphasis is required, or for loan words

CAPITALS may be used on the first appearance of a technical term

[] used on a more *ad hoc* basis, usually to indicate some kind of abstraction from the utterances in terms of grammar, activity, or constituency e.g. [modal], [acceptance], [yes]-component

courier used in transcriptions of talk-in-interaction
Glossary

This glossary is designed to provide brief definitions for certain terms and concepts which have particular relevance to this thesis, but which might be unfamiliar, or which require a stable reference point for this thesis. It should be noted that the necessarily brief definitions provided here downplay the contentious nature of some of the terms and concepts at numerous points. In the definitions, **bold type** indicates a cross reference to another term in the glossary.

adjacency pair (AP) a pair of utterances produced by different speakers in which the first utterance (a first pair part) makes relevant a particular second utterance (a second pair part); common examples include question (FPP)/answer (SPP), and greeting (FPP)/greeting (SPP); see especially Sacks (1992b: 521–575); Schegloff (1995b); Schegloff & Sacks (1973) and Section 3.4.3 of this thesis

first pair part (FPP) the first component of an adjacency pair, which makes a second pair part relevant

overlap the simultaneous production of talk by more than one participant (see especially Jefferson 1983, 1986; Schegloff 2000b; Wells & Macfarlane 1998; note that talk occurring in overlap is not equivalent to interruption, the latter term being reserved for talk which is turn competitive: see French & Local 1983, 1986)

repair the halting of the smooth progressivity of the talk, often to deal with some kind of trouble in speaking, hearing, or understanding; see especially Drew (1997); Schegloff (1979b, 1987b, 1992, 1997, 2000c); Schegloff et al. (1977)
second pair part (SPP) a response to a first pair part which completes an adjacency pair

transition relevance place (TRP) a place in talk at which turn transition becomes relevant (i.e. a shift in speakership from one participant to another would be legitimate), though not necessarily achieved; see especially Schegloff (1996)

transition space the space around the end of one turn contructional unit and the beginning of another in which turn transition might legitimately occur; see Jefferson (1983, 1986); Sacks et al. (1974); Wells & Macfarlane (1998)

turn a single, recognisably complete strip of talk, usually produced by a single speaker and composed of at least one turn constructional unit

turn constructional unit (TCU) a unit of talk which could constitute a possibly complete turn, and whose end is a transition relevance place; see Sacks et al. (1974); Schegloff (1996)

turn projection the anticipation of the end of a turn during its production; see Ford (2001); Fox (2001); Wells & Macfarlane (1998)

turn taking the shift of speakership from one participant to another, and the procedures and practices associated with that shift; see especially Sacks et al. (1974)

turn transition the shift of speakership from one participant to another; see Sacks et al. (1974)
References

References

References

References

218

